Advertisement

Rapid Method for Determining Boundaries of Former Austenite Grains in Bainitic-Martensitic Steels from Local Orientations of Structural Transformations

  • S. N. PetrovEmail author
  • A. V. Ptashnik
Article

A method for rapid determination of former austenite grains in bainitic-martensitic steels employing standard software for processing the results of mapping of crystallographic orientations obtained by electron back-scatter diffraction analysis in a scanning electron microscope is proposed. The method is verified for orientations of retained austenite in steel 09KhN2MD.

Key words

microstructure electron diffraction former austenite grains bainitic-martensitic class steels 

Notes

Experimental studies were conducted in equipment of the Center for Scientific Equipment Collective Usage “Composition, structure and properties of structural and functional materials” NITs Kurchatov Institute – TsNII KM “Prometey” with financial support of the Ministry of Education and Science within the scope of an agreement No. 14.595.21.0004, unique identifier RFMEF159517X0004.

References

  1. 1.
    S. V. Korotvskaya, V. V. Orlov, and E. I. Khlusova, “Methods for forming ultrafine grained and submicrocrystalline structure of ferrite-bainite steel,” Proizvod. Prokata, No. 10, 6 – 16 (2013).Google Scholar
  2. 2.
    A. A. Zisman, T. V. Soshina, and E. I. Khlusova, “Revelation of a previous austenite grain and analysis of metadynamic recrystallization kinetics for austenite of low-carbon steels under hot rolling conditions,” Pis’ma Mater., 2(1), 3 – 8 (2012).Google Scholar
  3. 3.
    A. I. Fernandez, P. Uranga, B. Lopez, and J. M. Rodrigez-Ilabe, “Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb – Ti microalloyed steels,” Mater. Sci. Eng. A, 316, 367 – 376 (2003).CrossRefGoogle Scholar
  4. 4.
    V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, et al., “Effect of austenite grain size and degree of deformation on steel structure formation of strength class K60,” Vopr. Materialoved., No. 4-68, 27 – 35 (2011).Google Scholar
  5. 5.
    E. V. Nesterova, N. Yu. Zolotarevskii, Yu. F. Titovets, and E. I. Khlusova, “Study of misorientation and model for forming a bainite structure in low-carbon steel under the effect of strain induced austenite,” Vopr. Materialoved., No. 4-68, 17 – 26 (2011).Google Scholar
  6. 6.
    J. Reiter, C. Bernard, and H. Presslinger, “Austenite grain size in the continuous casting process: metallographic methods and evaluation,” Mater. Charact., 59, 737 – 746 (2008).CrossRefGoogle Scholar
  7. 7.
    C. Ñayron, B. Artaud, and L. Briottet, “Reconstruction of parent grains from EBSD data,” Mater. Charact., 57, 386 – 401 (2006).CrossRefGoogle Scholar
  8. 8.
    V. Òari, A. D. Rollett, and H. Beladib, “Back calculation of parent austenite orientation using a clustering approach,” J. Appl. Crystallogr., 46, 210 – 215 (2013).CrossRefGoogle Scholar
  9. 9.
    M. Abbasi, T. W. Nelson, C. D. Sorensen, and L. Wei, “An approach to prior austenite reconstruction,” Mater. Charact., 66, 1 – 8 (2012).CrossRefGoogle Scholar
  10. 10.
    G Miyamoto, N. Iwata, N. Takayama, and T. Furuhara, “Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite,” Acta Mater., 58, 6393 – 6403 (2010).CrossRefGoogle Scholar
  11. 11.
    L. Germain, N, Gey, R. Mercier, et al., “An advanced approach to reconstructing parent orientation maps in the case of approximate orientation relations: application to steels,” Acta Mater., 60, 4551 – 4562 (2012).CrossRefGoogle Scholar
  12. 12.
    N. Bernier, L. Bracke, L. Malet, and S. Godet, “An alternative to the crystallographic reconstruction of austenite in steels,” Mater. Charact., 89, 23 – 32 (2014).CrossRefGoogle Scholar
  13. 13.
    E. Pereloma and D. V. Edmonds (eds.), Phase Transformations in Steels. Vol. 2: Diffusionless Transformations, High Strength Steels, Modeling and Advanced Analytical Techniques, Woodhead Publishing Limited, Philadelphia, USA (2012).Google Scholar
  14. 14.
    N. Y. Zolotorevsky, S. N. Panpurin, A. A. Zisman, and S. N. Petrov, “Effect of ausforming and cooling condition on the orientation relationship in martensite and bainite of low carbon steels,” Mater. Charact., 107, 278 – 282 (2015).CrossRefGoogle Scholar
  15. 15.
    G. Miyamoto, N. Takayama, and T. Furuhara, “Accurate measurement of the orientation relationship of lath martensite and bainite by electron backscatter diffraction analysis,” Scr. Mater., 60, 1113 – 1116 (2009).CrossRefGoogle Scholar
  16. 16.
    T. Furuhara, H. Kawata, S. Morito, and T. Maki, “Crystallography of upper bainite in Fe – Ni – C alloys,” Mater. Sci. Eng., A431, 228 – 236 (2006).CrossRefGoogle Scholar
  17. 17.
    T. Furuhara, H. Kawata, S. Morito, et al., “Variant selection in grain boundary nucleation of upper bainite,” Metall. Mater. Trans., 39A, 1003 – 1013 (2008).CrossRefGoogle Scholar
  18. 18.
    N. Takayama, G. Miyamoto, and T. Furuhara, “Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel,” Acta Mater., 60, 2387 – 2396 (2012).CrossRefGoogle Scholar
  19. 19.
    N. Yu. Zolotarevskii, AS. A. Zisman, S. N. Panpurin, et al., “Effect of grain size and deformed sub-structure of austenite on crystal geometric features of bainite and martensite of low-carbon steels,” Metalloved. Term. Obrab. Met., No. 10, 39 – 48 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Federal State Unitary Enterprise “Central Research Institute of Structural Materials “Prometey” Named by I. V. Gorynin of the National Redearch Center “Kurchatov Institute” (FGUP TsNII KM “Prometey”)St. PetersburgRussia

Personalised recommendations