Advertisement

Deformation Behavior of Finely-Lamellar Pearlite During Multiple Cold Plastic Deformation of Eutectoid Steel

  • N. V. Koptseva
  • Yu. Yu. EfimovaEmail author
  • M. V. Chukin
STRUCTURAL STEELS
  • 1 Downloads

Deformation behavior of finely-lamellar pearlite in steel with 0.78% C during multiple cold plastic deformation by drawing is considered. It is revealed that during deformation apart from ferrite platelet thinning with an increase in overall reduction cementite phase behavior starts to play a more important role. The change in distance between pearlite platelets in relation to the degree of deformation is evaluated. The connection between microstructure transformation and changes in mechanical properties during drawing is established.

Key words

eutectoid steel multiple cold plastic deformation drawing ferrite-carbide mixture distance between platelets cementite platelets mechanical properties scanning electron microscopy Thixomet PRO software 

Notes

The work was conducted with financial support of the Russian Ministry of Education and Science within the scope of implementing a comprehensive project for creating high-tech production with participation of a higher education establishment (Agreement No. 02.G25.31.0178 of 12.01.2015; No. MK204895 of 07.21.2015).

References

  1. 1.
    A. Hohenwarter, B. Völker, M. W. Kapp, et al., “Ultra-strong and damage tolerant metallic bulk materials: A lesson from nanostructured pearlitic steel wires,” Sci. Rep., 6, 1 – 10 (2016) (DOI: 10.1038_srep33228).Google Scholar
  2. 2.
    V. I. Izotov, V. A. Pozdnyakov, E. V. Luk’yanenko, et al., “Effect of pearlite fineness on the mechanical properties, deformation behavior, and nature of failure for high-carbon steel,” Fiz. Met. Metalloved., 103(5), 549 – 560 (2007)Google Scholar
  3. 3.
    J. Toribio, “Role of the microstructure on the mechanical properties of fully pearlitic eutectoid steels,” Fract. Struct. Integrity Rel. Iss., 30, 424 – 430 (2014).Google Scholar
  4. 4.
    Y. Tomota, T. Suzuki, and A. Kanie, “In situ neutron diffraction of heavily drawn steel wires with ultra-high strength under tensile loading,” Acta. Mater., 53, 463 – 467 (2005).CrossRefGoogle Scholar
  5. 5.
    M. V. Chukin, A. G. Korchunov, V. A. Bakshinov, et al., Production of High-Strength Steel Reinforcement for a New Generation of Reinforced Concrete Sleepers [in Russian] Metallurgizdat, Moscow (2014).Google Scholar
  6. 6.
    V. Ya. Zubov, “Wire patenting,” Metalloved. Term. Obrab. Met., No. 9, 49 – 56 (1972).Google Scholar
  7. 7.
    I. L. Yakovleva, N. A. Tereshchenko, M. V. Chukin, and N. V. Kontseva, “Evolution of the structure and strengthening of eutectoid steel during drawing wire of considerable diameter,” Deform. Razrush. Mater., No. 8, 36 – 43 (2013).Google Scholar
  8. 8.
    N. A. Tereshchenko, I. L. Yakovleva, T. A. Zubkova, et al., “Structural levels of pearlite deformation in carbon steel of eutectoid composition,” Fiz. Met. Metalloved., 114(5), 468 – 480 (2013).Google Scholar
  9. 9.
    V. N. Gridnev, V. G. Gavrilyuk, and Yu. Ya. Meshkov, Strength and Ductility of cold-Worked Steel [in Russian], Naukova Dumka, Kiev (1974).Google Scholar
  10. 10.
    G. Langford, “Deformation of pearlite,” Metall. Trans., 8A(6), 861 – 875 (1977).CrossRefGoogle Scholar
  11. 11.
    M. Zelin, “Microstructure evolution in pearlitic steels during wire drawing,” Acta Mater., 50, 4431 – 4447 (2002).CrossRefGoogle Scholar
  12. 12.
    M. Suliga, R. Kruzel, T. Garstka, and J. Gazdowicz, “The influence of drawing speed on structure changes in high carbon steel wires,” METABK, 54(1), 161 – 164 (2015).Google Scholar
  13. 13.
    E. Brandaleze, “Structural evolution of pearlite in steels with different carbon content under drastic deformation during cold drawing,” Proc. Mater. Sci., 8, 1023 – 1030 (2015).CrossRefGoogle Scholar
  14. 14.
    G. Gerstein and F. Nürnberger, “Structural evolution of thin lamellar cementite during cold drawing of eutectoid steels,” Proc. Eng., 81, 694 – 699 (2014).CrossRefGoogle Scholar
  15. 15.
    É. V. Parusov, V. V. Parusov, G. D. Sukhomlin, et al., “Effect of crystallography and fineness lamellar pearlite in material on the structure and properties of wire,” Stroit-vo, Mater., Mashinostr.: Starodub. Chteniya (2015).Google Scholar
  16. 16.
    É. S. Gorkunov, S. E. Grachev, S. V. Smirnov, et al., “Effect of high degrees of deformation during drawing on the physicomechanical properties of patented steel wire,” Fiz. Met. Metalloved., 98(5), 85 – 97 (2004).Google Scholar
  17. 17.
    V. M. Schastlivtsev, I. L. Yakovleva, N. A. Tereshchenko, and M. V. Chukin, “Formation of crystallographically orientated colonies of eutectoid decomposition products during plastic deformation of steel by drawing,” Dokl. Ross. Akad. Nauk, 447(4), 387 – 390 (2012).Google Scholar
  18. 18.
    F. B. Pickering, Physical Metallurgy and Development of Steels [in Russian], Metallurgiya, Moscow (1982).Google Scholar
  19. 19.
    J. D. Embury and R. M. Fisher, “The structure and properties of drawn pearlite,” Acta Metall., 14, 147 – 159 (1966).CrossRefGoogle Scholar
  20. 20.
    L. I. Tushinskii, A. A. Bataev, and L. B. Tikhomirova, Structure of Pearlite and Steels Structural Strength [in Russian], Sib. Otd. Nauka, Novosibirsk (1993).Google Scholar
  21. 21.
    V. M. Schastlivtsev, D. A. Mirzaev, I. L. Yakovleva, et al., Pearlite in Carbon Steels [in Russian], URO RAN, Ekaterinburg (2006).Google Scholar
  22. 22.
    D. J. Alexander and I. M. Bernstein, “Microstructural control of flow and fracture in pearlite steel,” in: A. R. Marder, J. I. Goldstein (eds.), Phase Transformations in Ferrous Alloys, Metall. Soc. AIME, N.Y. (1984).Google Scholar
  23. 23.
    V. M. Kardonskii, G. V. Kurdyumov, and M. D. Perikas, “ Fine structure of cold-worked high-carbon steel,” Fiz. Met. Metalloved., 15(2), 244 – 253 (1963)Google Scholar
  24. 24.
    B. L. Bramfitt and A. R. Marder, “A transmission-electron-microscopy study of the substructure of high-purity pearlite,” Mater. Charact., 39(2 – 5), 199 – 207 (1997).CrossRefGoogle Scholar
  25. 25.
    V. P. Fetisov, “Structural aspects of reduction of ductility for high-strength wire with high overall reduction,” Lit’e Metal., No 4(68), 107 – 109 (2012).Google Scholar
  26. 26.
    V. I. Izotov, V. A. Pozdnyakov, E. V. Luk’yanenko, et al., “Effect of pearlite fineness on the mechanical properties, deformation behavior, and nature of failure for high-carbon steel,” Fiz. Met. Metalloved., 103(5), 549 – 560 (2007).Google Scholar
  27. 27.
    V. I. Zel’dovich, A. É. Haifets, N. Yu. Frolova, and B. V. Litvinov, “Electron microscope study of features of high-speed deformation caused by the action of impact waves in steel pearlitic structure,” Fiz. Met. Metalloved., 103(2), 219 – 224 (2007).Google Scholar
  28. 28.
    V. Ya. Zubov, N. V. Chuprakova, and N. N. Barysnikova, “Effect of cementite shape on the change in fine structure and properties of steel wire during drawing,” Izv. Vyssh. Uchebn. Zaved., Chern. Met., No. 6, 120 – 123 (1971).Google Scholar
  29. 29.
    Yu. F. Starodubov, V. K. Babich, and L. I. Gasik, “Change in the mechanical properties during steel wire drawing,” Izv. Vyssh. Uchebn. Zaved., Chern. Met., No. 11, 115 – 158 (1961).Google Scholar
  30. 30.
    V. M. Schastlivtsev and I. L. Yakovleva, “Finely lamellar pearlite — the first volumetric bulk nano-material in carbon steel,” Izv. Ross. Akad. Nauk, Ser. Fiz., 79(9), 1221 – 1224 (2015).Google Scholar
  31. 31.
    A. G. Korchunov, G. S. Gun, M. A. Polyakova, et al., “Formation of nano-structured components in high-carbon steels by thermal and deformation action,” Vestn. G. I. Nosov Magnitogorsk. State Tech. Univ., No. 5, 33 – 35 (2013).Google Scholar
  32. 32.
    V. I. Vladimirov and A. E. Romanov, Dislocations in Crystals [in Russian], Nauka, Moscow (1986).Google Scholar
  33. 33.
    K. D. Potemkin, Heat Treatment and Drawing of High-Strength Wire [in Russian], Matallurgizdat, Moscow (1963).Google Scholar
  34. 34.
    V. M. Schastlivtsev, I. L. Yakovelava, N. V. Kotseva, et al., “Features and structure formation during thermal deformation action during production of high-strength reinforcing material,” Vestn. G. I. Nosov Magnitogorsk. Gos. Tekhn. Univ., No. 1(45), 32 – 37 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. V. Koptseva
    • 1
  • Yu. Yu. Efimova
    • 1
    Email author
  • M. V. Chukin
    • 1
  1. 1.G. I. Nosov Magnitogorsk State Technical UniversityMagnitogorskRussia

Personalised recommendations