Advertisement

Metal Science and Heat Treatment

, Volume 61, Issue 3–4, pp 243–248 | Cite as

Variation of the Structure-and-Phase Condition and Physical and Mechanical Properties of Cold-Deformed Leaded Brass Under Heating

  • A. G. IllarionovEmail author
  • Yu. N. Loginov
  • S. I. Stepanov
  • S. M. Illarionova
  • P. S. Radaev
COPPER AND TANTALUM ALLOYS
  • 9 Downloads

The methods of optical and scanning electron microscopy, microhardness measurement, differential scanning calorimetry (DSC), dilatometry, dynamic mechanical analysis, and hydrostatic weighing are used to study the structure and the physical and mechanical properties (density, microhardness, modulus of elasticity, coefficient of linear thermal expansion) of cold-deformed brass LS59-1 in the initial condition and after heating to 800°C. The DSC heating curve exhibits exo- and endothermic effects due to stress relaxation and retrogression (the exothermic effect at 115 – 235°C), melting of lead segregations (the endothermic effect at about 328°C), transition of the β′-phase into a disordered β -condition (the endothermic effect with minimum at 458°C), and transition of the brass into a single-phase β -condition (the endothermic effect at 642 – 747°C with minimum at 721°C).

Key words

cold deformation leaded brass differential scanning calorimetry dilatometry dynamic mechanical analysis phase transformations structure microhardness modulus of elasticity coefficient of linear thermal expansion 

Notes

The work has been performed with financial support of the Government of the Russian Federation, Act No. 211, Contract No. 02.A03.21.0006.

References

  1. 1.
    O. E. Osintsev and V. N. Fedorov, Copper and Copper Alloys. Domestic and Foreign Grades [in Russian], Mashinostroenie, Moscow (2004), 336 p.Google Scholar
  2. 2.
    GOST 15527–2004. Pressure Treated Copper-Zinc Alloys (Brasses). Act. 2005-07-01 [in Russian], Gosstandart Rossii, Izd. Standartov, Moscow (2004), 11 p.Google Scholar
  3. 3.
    A. P. Smiryagin, N. A. Smiryagina, and A. V. Belova, Commercial Nonferrous Metals and Alloys, A Reference Book [in Russian], Metallurgiya, Moscow (1974), 448 p.Google Scholar
  4. 4.
    O. E. Osintsev and V. N. Fedorov, “Copper and copper alloys. Pressure treated brasses,” Inzh. Zh., No. 4, 1 – 24 (2002).Google Scholar
  5. 5.
    I. N. Fridlyander (ed.), Mechanical Engineering. Encyclopedia. Nonferrous Metals and Alloys. Composite Metallic Materials, Vol. II-3 [in Russian], Mashinostroenie, Moscow (2001), 880 p.Google Scholar
  6. 6.
    N. Kh. Abrikosov (ed.), Copper-Base Binary and Multicomponent Systems, A Reference Book [in Russian], Nauka, Moscow (1079), 248 p.Google Scholar
  7. 7.
    L. Suárez, P. Rodriguez-Calvillo, J. M. Cabrera, et al., “Hot working analysis of a CuZn40Pb2 brass on the monophasic (β) and intercritical (α + β) regions,” Mater. Sci. Eng. A, 627, 42 – 50 (2015).CrossRefGoogle Scholar
  8. 8.
    J. Kwarciak, “Kinetics of phase transformations in Cu – Al and Cu – Zn – Al alloys,” J. Therm. Anal., 31, 1279 – 1287 (1986).CrossRefGoogle Scholar
  9. 9.
    V. I. Zel’dovich, I. V. Khomskaya, N. Yu. Frolova, et al., “Special features of thermoelastic martensitic transformation in alloy Cu – Zn – Al – V subjected to decomposition of β -solid solution,” Fiz. Met. Metalloved., 83(5), 64 – 72 (1997).Google Scholar
  10. 10.
    V. A. Bykov, T. V. Kulikova, D. A. Yagodin, et al., “Thermophysical and electrical properties of equiatomic CuZr alloy,” Fiz. Met. Metalloved., 116(11), 1123 – 1128 (2015).Google Scholar
  11. 11.
    S. L. Demakov, Yu. N. Loginov, A. G. Illarionov, et al., “Recrystallization of work-hardened copper from the standpoint of dynamic mechanical analysis,” Zavod. Lab., Diagn. Mater., 80(7), 36 – 39 (2014).Google Scholar
  12. 12.
    N. P. Lyakishev (ed.), Phase Diagrams of Binary Metallic Systems. Vol. 1 [in Russian], Mashinostroenie, Moscow (1996), 992 p.Google Scholar
  13. 13.
    B. A. Kolachev, V. N. Elagin, and V. A. Livanov, Physical Metallurgy and Heat Treatment of Nonferrous Metals and Alloys [in Russian], MISiS, Moscow (2005), 992 p.Google Scholar
  14. 14.
    O. A. Yakovtseva, A. V. Mikhailovskaya, A. D. Kotov, and V. K. Portnoy, “Effect of alloying on superplasticity of two-phase brasses,” Fiz. Met. Metalloved., 117(7), 765 – 772 (2016).Google Scholar
  15. 15.
    Yu. N. Loginov and A. S. Ovchnnikov, “Raising the homogeneity of structure and properties of pressed billets from alpha + beta leaded brasses,” Metallurg, No. 4, 62 – 66 (2015).Google Scholar
  16. 16.
    R. Wawsczak, A. Baczmanski, K. Wierzbanowski, et al., “Residual stress in α-brass during annealing,” Mater. Sci. Forum, 571 – 572, 69 – 73 (2008).Google Scholar
  17. 17.
    Materials Science International Team MSIT® Cu – Pb – Zn (Copper–Lead–Zinc), doi.org/ https://doi.org/10.1007/978-3-540-47000-736.
  18. 18.
    A. G. Illarionov, S. B. Grib, A. A. Popov, et al., “Effect of hydrogen on formation of structure and phase composition in an alloy based on Ti2 AlNb,” Fiz. Met. Metalloved., 109(2), 154 – 164 (2010).Google Scholar
  19. 19.
    B. S. Tikhonov, Heavy Nonferrous Metals and Alloys, Vol. 1 [in Russian], FGUP “TSNIIÉItsvetmet,” (2000), 452 p.Google Scholar
  20. 20.
    A. A. Ershov, V. V. Kotov, and Yu. N. Loginov, “Capabilities of QForm-extrusion based on an example of the extrusion of complex shapes,” Metallurgist, 55(9 – 10), 695 – 701 (2012).CrossRefGoogle Scholar
  21. 21.
    Yu. N. Loginov and O. F. Degtyareva, “Thermoelastic variation of needle size under pressing,” Kuzn.-Shtamp. Proizvod., No. 8, 9 – 12 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. G. Illarionov
    • 1
    Email author
  • Yu. N. Loginov
    • 1
  • S. I. Stepanov
    • 1
  • S. M. Illarionova
    • 1
  • P. S. Radaev
    • 1
  1. 1.Ural Federal University after the First President of Russia B. N. EltsynEkaterinburgRussia

Personalised recommendations