Metal Science and Heat Treatment

, Volume 61, Issue 3–4, pp 234–238 | Cite as

Effect of Cryogenic Cooling After Ecap on Mechanical Properties of Aluminum Alloy D16

  • I. E. VolokitinaEmail author

Special features of the structural and mechanical behavior of aluminum alloy D16 under equal-channel angular pressing (ECAP) and subsequent cooling to cryogenic temperatures are studied. The mean grain size, the conventional yield strength, and the elongation are determined. It is shown that the ECAP refines the grains and raises the strength properties of the alloy.

Key words

microstructure ECAP aluminum cryogenic cooling microhardness 


  1. 1.
    V. Yu. Slesarenko, D. A. Gunderov, P. G. Ulyanov, and R. Z. Valiev, “Formation of amorphous states in Ti50Ni25Cu25 alloy subjected to severe plastic deformation: Nanoglass issue, IOP Conf. Series,” Mater. Sci. Eng., 63 (2014).Google Scholar
  2. 2.
    D. V. Pavlenko, D. V. Tkach, V. Yu. Kotsyuba, and Ya. E. Beigel’zimer, “Analysis of the conditions of formation of submicrocrystalline structure in iron-nickel alloys under helical extrusion,” Metalloved. Term. Obrab. Met., No. 5(743), 8 – 14 (2017).Google Scholar
  3. 3.
    S. Lezhnev, A. Nayzabekov, A. Volokitin, and I. Volokitina, “New combined process pressing-drawing and impact on properties of deformable aluminum wire,” Proc. Eng., 81, 1505 (2014).CrossRefGoogle Scholar
  4. 4.
    G. Raab, R. Valiev, T. Lowe, and Y. Zhu, “Continuous processing of ultrafine grained Al by ECAP-conform,” Mater. Sci. Eng., 382, 30 – 34 (2004).CrossRefGoogle Scholar
  5. 5.
    I. E. Volokitina, S. N. Lezhnev, E. P. Orlova, and G. G. Kurapov, “Research of the microstructure and mechanical properties of copper and CuZn36 developing during deformation into the equal channel speed matrix with high-intensity cooling,” Key Eng. Mater., 684, 346 (2016).CrossRefGoogle Scholar
  6. 6.
    Liu Junway, Ouyang Zipeng, Lu Shiqiang, Jiang Yong, and Huang Yuanzhi, “Effect of ECAP by routes Bc and C on the microstructure and temperature of martensitic transformation of alloy NITINB, Metalloved. Term. Obrab. Met., No. 1(739), 48 – 53 (2017).Google Scholar
  7. 7.
    A. Naizabekov, S. Lezhnev, and I. Volokitina, “Change in copper microstructure and mechanical properties with deformation in an equal channel stepped die,” Metal Sci. Heat Treat., 57(5 – 6), 254 (2015).CrossRefGoogle Scholar
  8. 8.
    I. Yu. Khmelevskaya, R. D. Karelin, S. D. Prokoshkin, et al., “Effect of quasi-continuous equal channel angular pressing on the structure and functional properties of shape memory Ti – Ni alloys,” Fiz. Met. Metalloved., No. 118(3), 293 (2017).Google Scholar
  9. 9.
    V. A. Bratov and E. N. Borodin, “Comparison of dislocation density based approaches for prediction of defect structure evolution in aluminum and copper processed by ECAP,” Mater. Sci. Eng. A, 631, 10 – 17 (2015).CrossRefGoogle Scholar
  10. 10.
    I. E. Volokitina and G. G. Kurapov, “Effect of initial structural state on formation of structure and mechanical properties of steel under ECAP,” Metalloved. Term. Obrab. Met., No. 12, 44 – 50 (2017).Google Scholar
  11. 11.
    K. Venkateswarlu, M. Ghosh, A. K. Ray, et al., “On the feasibility of using a continuous processing technique incorporating a limited strain imposed by ECAP,” Mater. Sci. Eng. A, 485, 476 – 480 (2008).CrossRefGoogle Scholar
  12. 12.
    S. N. Lezhnev, I. E. Volokitina, and T. Koinov, “Document research of influence of equal channel angular pressing on the microstructure of copper,” J. Chem. Technol. Metall., 49(6), 621 (2014).Google Scholar
  13. 13.
    Yu. M. Vainblat, S. Yu. Klepachevskaya, and P. Sh. Lantsman, “Diagrams of phase states and recrystallization of hot-deformed alloy AK4-1,” Fiz. Met. Metalloved., 44(4), 834 (1977).Google Scholar
  14. 14.
    Yu. M. Vainblat, “Structural states of semiproducts from deformable aluminum alloys,” Tekhnol. Legk. Splav., No. 8, 34 (1992).Google Scholar
  15. 15.
    M. A. Vasil’ev, S. M. Voloshko, and L. F. Yatsenko, “Microstructure and mechanical properties of metals and alloys deformed in liquid nitrogen,” Usp. Fiz. Met., 13, 303 – 343 (2012).CrossRefGoogle Scholar
  16. 16.
    S. K. Panigrahi, R. Jayaganthan, V. Pancholi, and M. Gupta, “A DSC study on the precipitation kinetics of cryorolled Al 6063 alloy,” Mater. Chem. Phys., 122, 188 – 193 (2010).CrossRefGoogle Scholar
  17. 17.
    S. Ramesh Kumar, Gudimetla Kondaiah, B. Tejaswi, and B. Ravisankar, “Effect of microstructure and mechanical properties of Al – Mg alloy processed by ECAP at room temperature and cryo temperature,” Trans. Indian Inst. Met., 70, 639 – 648 (2017).CrossRefGoogle Scholar
  18. 18.
    V. L. Niranjani, K. C. H. Kumar, and V. S. Sarma, “Development of high strength Al – Mg – Si AA6061 alloy through cold rolling and aging,” Mater. Sci. Eng. A, 515, 169 – 174 (2009).CrossRefGoogle Scholar
  19. 19.
    A. P. Zhilyaev, A. A. Gimazov, G. L. Raab, and T. G. Langdon, Mater. Sci. Eng. A, 486, 123 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Karaganda State Industrial UniversityTemirtauKazakhstan

Personalised recommendations