Metal Science and Heat Treatment

, Volume 61, Issue 3–4, pp 211–216 | Cite as

A Study of the Effect of Alloying of Roll-Foundry Iron with Vanadium

  • K. N. VdovinEmail author
  • N. A. Feoktistov
  • D. A. Gorlenko
  • D. V. Kuryaev
  • O. A. Nikitenko

The effect of alloying with vanadium and nitrided vanadium on the structure of the functional layer of a forming roll from cast iron is studied. The influence of the content of the introduced alloying addition on variation of qualitative and quantitative parameters of the components of the microstructure is determined. The changes in the sizes, the graphite and carbide contents, and the content of retained austenite is investigated. The most expedient content of the introduced vanadium and nitrided vanadium for minimizing the content of retained austenite in the microstructure of the cast iron is determined.

Key words

cast iron forming roll vanadium nitrogen graphite carbides retained austenite 


  1. 1.
    K. N. Vdovin, Forming Rolls. A Monograph [in Russian], Izd. Magnitogorsk. Gos. Tekh. Univ. Im. G. I. Nosova, Magnitogorsk (2013), 443 p.Google Scholar
  2. 2.
    F. Martini and K. A. Gostev, “New generation of wear-resistant bimetallic rolls for sheet mills,” Metallurgist, 43, 200 – 204 (1999).CrossRefGoogle Scholar
  3. 3.
    Amitava Ray, M. S. Pradad, P. K. Barhai, and S. K. Mukherjee, “Metallurgical investigation of prematurely failed hot-strip mill work rolls: Some microstructural observations,” J. Failure Anal. Preven., 4, 58 – 66 (2004).CrossRefGoogle Scholar
  4. 4.
    Pankhur Sinha, Shivanandan S. Indimath, Goutam Mukhopadhyay, and Sandip Bhattacharyya, “Failure of work roll of a thin strip rolling mill: A case study,” Proc. Eng., 86, 940 – 948 (2014).Google Scholar
  5. 5.
    Piyas Palita, Hrishikesh R. Jugadea, Arvind Kumar Jhab, et al., “Failure analysis of work rolls of a thin hot strip mill,” Case Studies Eng. Failure Anal., 3, 39 – 45 (2015).CrossRefGoogle Scholar
  6. 6.
    Tomas Valeka and Jiri Hampl, “Prediction of metallurgic quality of ICDP material before tapping, in: 2011 Int. Conf. on Physics Science and Technology (ICPST 2011),” Phys. Proc., 22, 191 – 196 (2011).CrossRefGoogle Scholar
  7. 7.
    Amitava Ray, M. S. Prasad, S. K. Dhua, et al., “Microstructural features of prematurely failed hot-strip mill work rolls: Some studies in spalling propensity,” J. Mater. Eng. Perform., 9, 449 – 456 (2000).CrossRefGoogle Scholar
  8. 8.
    Liu Jinzhu and Man Yongfa, “Development of abrasion-resistant Ni-hard 4 cast irons,” Wear, 162 – 164, 833 – 836 (1993).CrossRefGoogle Scholar
  9. 9.
    A. Ray, D. Mukherjee, B. Sarkar, and S. Mishra, “Influence of microstructure on the premature failure of a second-intermediate sendzimir mill drive roll,” J. Mater. Eng. Perform., 3, 649 – 656 (1994).CrossRefGoogle Scholar
  10. 10.
    Sunghak Lee, Do Hyung Kim, Jae Hwa Ryu, and Keersam Shin, “Correlation of microstructure and thermal fatigue property of three work rolls,” Metall. Mater. Trans. A, 28, 2595 – 2608 (1997).CrossRefGoogle Scholar
  11. 11.
    M. Nilssona and M. Olssona, “Microstructural, mechanical and tribological characterization of roll materials for the finishing stands of the hot strip mill for steel rolling,” Wear, 307, 209 – 217 (2013).CrossRefGoogle Scholar
  12. 12.
    Liu Jinzhu, Li Shizhuo, and Man Yongfa, “Wear resistance of Ni-hard 4 and high-chromium cast iron re-evaluated,” Wear, 166, 37 – 40 (1993).CrossRefGoogle Scholar
  13. 13.
    K. N. Vdovin, D. A. Gorlenko, and A. N. Zavalischin, “Influence of industrial tempering on the composition of complex cast iron,” Steel in Translation, 43, 288 – 290 (2013).CrossRefGoogle Scholar
  14. 14.
    Minwoo Kanga, Yongchan Suhb, Yong-Jun Ohc, and Young-Kook Leea, “The effects of vanadium on the microstructure and wear resistance of centrifugally cast Ni-hard rolls,” J. Alloys Compd., 609, 25 – 32 (2014).CrossRefGoogle Scholar
  15. 15.
    J. Asensio-Lozano and J. F. Alvarez-Antolin, “Saturated fractional design of experiments: Toughness and graphite phase optimizing in Ni-hard cast irons,” J. Mater. Eng. Perform., 17, 216 – 223 (2008).CrossRefGoogle Scholar
  16. 16.
    J. Asensio-Lozanoa, J. F. Alvarez-Antolin, and G. F. Vander-Voortc, “Identification and quantification of active manufacturing factors for graphite formation in centrifugally cast Nihard cast irons,” J. Mater. Proc. Technol., 206, 202 – 215 (2008).CrossRefGoogle Scholar
  17. 17.
    Kassim S. Al-Rubaieaa and Michael Pohlb, “Heat treatment and two-body abrasion of Ni-hard 4,” Wear, 312, 21 – 28 (2014).CrossRefGoogle Scholar
  18. 18.
    K. N. Vdovin, D. A. Gorlenko, and A. N. Zavalischin, “Structure changes of chromium-nickel indefinite cast irons in heating,” Vest. Magnitogorsk. Gos. Tekh. Univ. Im. G. I. Nosova, No. 5(45), 9 – 11 (2013).Google Scholar
  19. 19.
    K. N. Vdovin, D. A. Gorlenko, and A. N. Zavalishchin, “Effect of tempering mode on proportion of structural components in white complexly alloyed cast iron,” Tekhnol. Met., No. 8, 13 – 16 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • K. N. Vdovin
    • 1
    Email author
  • N. A. Feoktistov
    • 1
  • D. A. Gorlenko
    • 1
  • D. V. Kuryaev
    • 2
  • O. A. Nikitenko
    • 3
  1. 1.G. I. Nosov Magnitogorsk State Technical UniversityMagnitogorskRussia
  2. 2.“MZPV” CompanyMagnitogorskRussia
  3. 3.Research Institute for NanosteelsMagnitogorskRussia

Personalised recommendations