Advertisement

Metal Science and Heat Treatment

, Volume 61, Issue 3–4, pp 196–201 | Cite as

Effect of Straining Conditions on Structural Characteristics of Pressed Shape Memory Alloy 45% Ti – 45% Ni – 10% Nb

  • N. N. PopovEmail author
  • T. I. Sysoeva
  • E. N. Grishin
  • A. A. Kostyleva
Article
  • 3 Downloads

The effect of the temperature-and-rate conditions of straining on the structural characteristics of pressed alloy 45% Ti – 45% Ni – 10% Nb is studied. The microstructure and the content of elements in the alloy are determined. The phases are analyzed using a MIRA//LMU scanning electron microscope. The data obtained are analyzed statistically with the help of the STADIA 7.0 software. Scanning electron microscopy is used to show that the content of elements in the alloy does not depend on the straining conditions, i.e., the temperature, the strain rate, and the strain. The results of the tests are processed statistically and used to develop technologies for the nuclear power industry.

Key words

shape memory alloys of the Ti – Ni – Nb system parameters of induced strain content of elements structure methods of scanning electron microscopy statistical processing 

References

  1. 1.
    D. B. Chernov, Structural Application of Shape Memory Alloys [in Russian], NIISU, Moscow (1999), 232 p.Google Scholar
  2. 2.
    N. N. Popov, Development of Advanced Technologies Based on Shape Memory Materials [in Russian], FGUP “RFYaTSVNIIEF,” Sarov (2008), 315 p.Google Scholar
  3. 3.
    Yu. K. Kovneristyi, O. K. Belousov, S. G. Fedotov, et al., “Thermodynamic and structural aspects of research of NiTi-base alloys with SME,” in: Titanium Alloys with Special Properties [in Russian], Nauka, Moscow (1982), pp. 4 – 10.Google Scholar
  4. 4.
    V. A. Likhachev and S. R. Shimanskii, “Effect of Ti – Ni – Nb composition on its properties and operating capacity,” Dep. VINITI No. 7865–84 (1984), 17 p.Google Scholar
  5. 5.
    V. A. Udovenko, P. L. Potapov, S. D. Prokoshkin, et al., “A study of the functional properties of alloy Ti – 45% Ni – 10% Nb with wide hysteresis of martensitic transformation,” Metalloved. Term. Orab. Met., No. 9, 19 – 22 (2000).Google Scholar
  6. 6.
    V. Ya. Abramov, N. M. Aleksandrova, D. V. Borovkov, et al., “Structure and functional properties of heat treated and thermomechanically treated alloys based on Ti – Ni – Nb with wide martensitic hysteresis. 1. Ternary Ti – Ni – Nb alloys,” Fiz. Met. Metalloved., 101(4), 436 – 446 (2006).Google Scholar
  7. 7.
    N. N. Popov, S. D. Prokoshkin, M. Yu. Sidorkin, et al., “A study of the effect of thermomechanical treatment on the structure and functional properties of alloy 45Ti – 45Ni – 10Nb,” Metally, No. 1, 71 – 77 (2007).Google Scholar
  8. 8.
    N. N. Popov, T. I. Sysoeva, S. D. Prokoshkin, et al., “A study of mechanical properties and reactive stresses of shape memory alloys of the Ti – Ni – Nb system,” Metally, No. 4, 62 – 70 (2007).Google Scholar
  9. 9.
    N. N. Popov, A. A. Aushev, T. I. Sysoeva, et al., “A study of the structure, element and phase compositions and kinetics of phase transformations in shape memory alloys of the Ti – Ni – Nb system,” Metally, No. 4, 97 – 105 (2012).Google Scholar
  10. 10.
    N. N. Popov, V. F. Lar’kin, D. V. Presnyakov, et al., “A study of thermomechanical characteristics of shape memory alloys of the Ti – Ni – Nb system and of the effect of heat treatment on them,” Fiz. Met. Metalloved., 114(4), 380 – 390 (2013).Google Scholar
  11. 11.
    N. N. Popov, V. F. Lar’kin, D. V. Presnyakov, and A. A. Kostyleva, “A study of mechanical characteristics of shape memory alloys of the Ti – Ni – Nb system and the effect of heat treatment on them,” Zavod. Lab., Diagn. Mater., 80(8), 22 – 20 (2014).Google Scholar
  12. 12.
    N. N. Popov, V. F. Lar’kin, D. V. Presnyakov, and E. B. Suvorova, “Development of advanced technologies based on shape memory materials,” in: Novel Technologies: Proc. XI All-Russia Conf. [in Russian], RAN, Moscow (2014), Vol. 2, pp. 137 – 151.Google Scholar
  13. 13.
    C. S. Zhang, L. C. Zhao, T. W. Duering, and C. M. Wayman, “Effects of deformation on transformation hysteresis and shape memory effect in a Ni47Ti44Nb9 alloy,” Scr. Metall. Mater., 24, 1807 – 1812 (1990).CrossRefGoogle Scholar
  14. 14.
    L. C. Zhao, “Study of Ti – Ni – Nb shape memory alloys with a wide hysteresis,” in: Proc. Int. Symp. on Shape Memory Materials, (Kanazawa, Japan, May 1999), Mater. Sci. Forum, 327 – 328, 23 – 30 (2000).Google Scholar
  15. 15.
    X. M. He and L. J Rong, “DSC analysis of reverse martensitic transformation in deformed Ti – Ni – Nb shape memory alloy,” Scr. Mater., 51(1), 7 – 11 (2004).Google Scholar
  16. 16.
    N. N. Popov, “Experimental-methodological base for studying thermomechanical properties of shape memory materials,” Zavod. Lab., Diagn. Mater., 72(12), 34 – 39 (2006).Google Scholar
  17. 17.
    A. P. Kulaichev, Universal Program Statistical Packet STADIA (version 7.0) for Windows [in Russian], NPO “Informatika i Komp’yutery,” Moscow (2007).Google Scholar
  18. 18.
    A. P. Kulaichev, Methods and Means of Complex Analysis of Data [in Russian], Forum-Infra-M, Moscow (2006), 512 p.Google Scholar
  19. 19.
    M. N. Stepnov, Statistical Methods of Processing of Results of Mechanical Tests [in Russian], Mashinostroenie, Moscow (1985), 232 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. N. Popov
    • 1
    Email author
  • T. I. Sysoeva
    • 1
  • E. N. Grishin
    • 1
  • A. A. Kostyleva
    • 1
  1. 1.Russian Federal Nuclear Center – All-Russia Research Institute of Experimental Physics (RFYaTs – VNIIEF)SarovRussia

Personalised recommendations