Advertisement

A Study of Parameters of Nitriding Processes. Part 1

  • J. MichalskiEmail author
  • E. Wołowiec-Korecka
Article

Materials and methods of study of nitriding parameters and nitriding atmospheres obtained under different dilution conditions and at different pressures of undiluted ammonia and the reactions occurring in them are described. Calculated relations characterizing the dependence of the nitrogen potential on the characteristics of the medium and the effect of the degree of dissociation of ammonia on the content of nitrogen in the atmosphere are suggested.

Key words

gas nitriding low-pressure nitriding dilution of ammonia nitrogen potential rate of dissociation 

References

  1. 1.
    M. A. J. Somers and E. J. Mittemeijer, “Layer, growth, kinetics on gaseous nitriding of pure iron: evolution of diffusion coefficients for nitrogen in iron nitrides,” Metall. Mater. Trans. A, 26, 57 – 74 (1995).CrossRefGoogle Scholar
  2. 2.
    L. Maldzinski, Thermodynamic, Kinetic and Technological Aspects of Producing Nitrided Layers on Iron and Steel in Processes of Gas Nitriding, Poznan University of Technology, Poznan (2002).Google Scholar
  3. 3.
    D. Jordan, H. Antes, V. Osterman, and T. Jones, “Vacuum nitriding of 4140 steel,” Heat Treat. Prog., 3 – 4, 33 – 38 (2008).Google Scholar
  4. 4.
    J. Michalski, “Using nitrogen availability as a nitriding process parameter,” Ind. Heat., 10, 63 – 68 (2012).Google Scholar
  5. 5.
    J. Michalski, Characteristics and Calculations of Atmospheres for Controlled Gas Nitriding of Steel, Institute of Precision Mechanics, Warsaw (2010).Google Scholar
  6. 6.
    E. Lehrer, “Über das Eisen-Wasserstoff-Amoniak-Gleichgewicht,” Z. für Elektrochem., 36, 383 – 392 (1930).Google Scholar
  7. 7.
    E. J. Mittemeijer and M. A. Somers, “Thermodynamics, kinetics, and process control of nitriding,” Surf. Eng., 13, 483 – 497 (1997).CrossRefGoogle Scholar
  8. 8.
    A. V. Smirnov and Y. S. Kuleshov, “Calculations for nitriding with diluted ammonia,” Metall. Sci. Heat Treat., 8, 385 – 403 (1966) (doi:  https://doi.org/10.1007/BF00649318).CrossRefGoogle Scholar
  9. 9.
    H. J. Grabke, “Reaktionen von Ammoniak, Stickstoff und Wasserstoff an der Oberfläche von Eisen,” Berichte Bunsenges für Phys. Chem., 4, 533 – 548 (1968).Google Scholar
  10. 10.
    N. I. Kardonina, A. S. Yurovskikh, and A. S. Kolpakov, “Transformations in the Fe – Ni system,” Metall. Sci. Heat Treat., 52, 457 – 467 (2010).CrossRefGoogle Scholar
  11. 11.
    W. Arabczyk and J. Zamlynny, “Study of the ammonia decomposition over iron catalysts,” Catal. Lett., 60, 167 – 171 (1999).CrossRefGoogle Scholar
  12. 12.
    R. Wróbel and W. Arabczyk, “Solid-gas reaction with adsorption as the rate limiting step,” J. Phys. Chem. A, 110, 9219 – 24 (2006) (doi:  https://doi.org/10.1021/jp061947b).CrossRefGoogle Scholar
  13. 13.
    J. Kunze, Nitrogen and Carbon in Iron and Steels Thermodynamics, Akademie Verlag, Berlin (1990).Google Scholar
  14. 14.
    B. Kooi, M. A. J. Somers, and E. J. Mittemeijer, “An evaluation of the FeN phase diagram considering long range order of N atoms, γ′-Fe4N(1–x)and ε-Fe2N(1–z),” Metall. Mater. Trans. A, 27, 1064 – 1071 (1996).Google Scholar
  15. 15.
    J. R. Jennings, Catalytic Ammonia Synthesis Fundamentals and Practice, Plenum Press, New York (1991).CrossRefGoogle Scholar
  16. 16.
    K. Aika, L. J. Christiansen, I. Dybkjaer, et al., Ammonia Catalysis and Manufacture, Springer Verlag, Berlin/Heidelberg (1995).Google Scholar
  17. 17.
    K. H. Jack, “The occurrence and the crystal structure of α-iron nitride; A new type of interstitial alloy formed during the tempering of nitrogen-martensite,” Proc. R. Soc. Lond., 208, 216 – 224 (1951).CrossRefGoogle Scholar
  18. 18.
    K. H. Jack, “Iron-nitrogen system: The crystal structures of e-phase iron nitrides,” Acta Crystallogr., 5, 404 – 411 (1952).CrossRefGoogle Scholar
  19. 19.
    L. Małdziñski and J. Tacikowski, “Concept of an economical and ecological process of gas nitriding of steel,” HTM Hartereitechnische Mitteilungen, 61, 296 – 302 (2006) (doi:  https://doi.org/10.3139/105.100399).CrossRefGoogle Scholar
  20. 20.
    N. L. Anichkina, V. S. Bogolyubov, V. V. Boiko, et al., “Comparison of methods of gas, ionic and vacuum nitriding,” Metall. Sci. Heat Treat., 31, 170 – 174 (1989).CrossRefGoogle Scholar
  21. 21.
    M. Yang and R. D. Sisson, “Alloy effects on the gas nitriding process, J. Mater. Eng. Perform., 23, 4181 – 4186 (2014) (doi:  https://doi.org/10.1007/s11665-014-1187-1).CrossRefGoogle Scholar
  22. 22.
    L. Barrallier, “Classical nitriding of heat treatable steel,” Thermochem. Surf. Eng. Steels, Elsevier (2015), pp. 393 – 412 (doi:  https://doi.org/10.1533/9780857096524.3.393).CrossRefGoogle Scholar
  23. 23.
    K. T. Cho, K. Song, S. H. Oh, et al., “Enhanced surface hardening of AISI D2 steel by atomic attrition during iron nitriding,” Surf. Coat. Technol., 251, 115 – 121 (2014) (doi:  https://doi.org/10.1016/j.surfcoat.2014.04.011).CrossRefGoogle Scholar
  24. 24.
    D. Manova, D. Hirsch, J. W. Gerlach, et al., “In situ investigation of phase formation during low energy ion nitriding of Ni80Cr20 alloy,” Surf. Coat. Technol., 259, 434 – 441 (2014) (doi:  https://doi.org/10.1016/j.surfcoat.2014.10.054).CrossRefGoogle Scholar
  25. 25.
    I. Rosales, H. Martinez, and R. Guardian, “Mechanical performance of thermally post-treated ion-nitrided steels,” Appl. Surf. Sci., 371, 576 – 582 (2016) (doi:  https://doi.org/10.1016/j.apsusc.2016.03.048).CrossRefGoogle Scholar
  26. 26.
    D. Hoche, J. Kaspar, and P. Schaaf, “Laser nitriding and carburization of materials,” in: J. R. Lawrence, C. Dowding, D. Waugh, and J. B. Griffiths (eds.), Laser Surf. Eng., Elsevier (2015), pp. 33 – 58 (doi:  https://doi.org/10.1016/B978-1-78242-074-3.00002-7).CrossRefGoogle Scholar
  27. 27.
    P. Kula, E. Wolowiec, R. Pietrasik, et al., “Non-steady state approach to the vacuum nitriding for tools,” Vacuum, 88, 1 – 7 (2013) (doi:  https://doi.org/10.1016/j.vacuum.2012.08.001).CrossRefGoogle Scholar
  28. 28.
    S. M. Soshkin, Y. M. Lakhtin, and Y. D. Kogan, “Structure of the diffusion layer with vacuum nitriding,” Metall. Sci. Heat Treat., 26, 521 – 523 (1984).CrossRefGoogle Scholar
  29. 29.
    Y. M. Lakhtin, Y. D. Kogan, and S. M. Soshkin, “Nitriding of steels in vacuum,” Metall. Sci. Heat Treat., 22, 635 – 638 (1980).CrossRefGoogle Scholar
  30. 30.
    M. Perez and F. J. Belzunce, “A comparative study of salt-bath nitrocarburizing and gas nitriding followed by post-oxidation used as surface treatments of H13 hot forging dies,” Surf. Coat. Technol., 305, 146 – 157 (2016) (doi: https://doi.org/10.1016/j.surfcoat.2016. 08.003).Google Scholar
  31. 31.
    Z. Zhou, M. Dai, Z. Shen, and J. Hu, “Effect of D.C. electric field on salt bath nitriding for 35 steel and kinetics analysis,” J. Alloys Compd., 623, 261 – 265 (2015) (doi: https://doi.org/10.1016/j.jallcom. 2014.10.146).Google Scholar
  32. 32.
    Y. M. Lakhtin and Y. D. Kogan, “Controlled nitriding processes,” Metall. Sci. Heat Treat., 20, 667 – 671 (1978) (doi:  https://doi.org/10.1007/BF00780806).CrossRefGoogle Scholar
  33. 33.
    J. Tacikowski and J. Zysk, Method of Gas Nitriding, PL 85924 (1977).Google Scholar
  34. 34.
    M. Kulka, D. Panfil, J. Michalski, and P. Wach, “The effects of laser surface modification on the microstructure and properties of gas-nitrided 42CrMo4 steel,” Opt. Laser Technol., 82, 203 – 219 (2016) (doi:  https://doi.org/10.1016/j.optlastec.2016.02.021).CrossRefGoogle Scholar
  35. 35.
    D. Panfil, M. Kulka, P. Wach, et al., “Nanomechanical properties of iron nitrides produced on 42CrMo4 steel by controlled gas nitriding and laser heat treatment,” J. Alloys Compd., 706, 63 – 75 (2017) (doi:  https://doi.org/10.1016/j.jallcom.2017.02.220).CrossRefGoogle Scholar
  36. 36.
    L. Maldzinski and J. Tacikowski, “ZeroFlow gas nitriding of steels,” in: M. A. Mitemeijer and J. Somers (eds.), Thermochem. Surf. Eng. Steels, Elsevier (2015), pp. 459 – 483 (doi:  https://doi.org/10.1533/9780857096524.3.459).CrossRefGoogle Scholar
  37. 37.
    M. Bazel, M. Korecki, L. Maldzinski, et al., “Industrial experiences with controlled nitriding using a ZeroFlow method,” Heat Treat. Prog., 7 – 8, 19 – 22 (2009).Google Scholar
  38. 38.
    P. Kula, R. Pietrasik, and E. Stañczyk-Wo3owiec, Method of Nitriding Tools Made of Iron Alloys, PL 219125 (2014).Google Scholar
  39. 39.
    V. M. Zinchenko, V. Y. Syropyatov, V. V. Barelko, and L. A. Bykov, “Gas nitriding in catalytically prepared ammonia media,” Metall. Sci. Heat Treat., 39, 280 – 284 (1977).CrossRefGoogle Scholar
  40. 40.
    W. S. Krylov, E. H. Goralczyk, and G. W. Szerbiednickij, “Features of nitriding of iron and steel in an ammonia pressure below atmospheric pressure,” Metally, 4, 175 – 178 (1977).Google Scholar
  41. 41.
    E. Wołowiec, P. Kula, B. Januszewicz, and M. Korecki, “Mathematical modelling the low-pressure nitriding process,” Appl. Mech. Mater., 421, 377 – 383 (2013).CrossRefGoogle Scholar
  42. 42.
    B. J. Lightfoot and K. H. Jack, “Kinetics of nitriding with and without white layer formation,” in: Proc. Heat Treat.’73, The Metals Society, London (1973), pp. 59 – 66 (1973).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Warsaw University of Life Sciences, Faculty of Production EngineeringWarsawPoland
  2. 2.Lodz University of Technology, Institute of Materials Science and EngineeringLodzPoland
  3. 3.Institute of Precision MechanicsWarsawPoland

Personalised recommendations