Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 9–10, pp 674–679 | Cite as

High Plastic Deformations and High Cooling Rates at the Interface of Explosion-Welded Materials

  • I. A. BataevEmail author
  • I. V. Ivanov
  • Yu. N. Malyutina
  • K. I. Émurlaev
  • Yu. Yu. Émurlaeva
SIMULATION
  • 39 Downloads

Results of mathematical simulation of processes of plastic deformation, heating and cooling of steel plates during high-speed collision are presented. The method of hydrodynamics of smoothed particles is used to simulate the processes of plastic deformation and of the corresponding heating. The results of the simulation agree well with the experimental data and make it possible to explain the special features of structures observed in explosion-welded steel billets.

Key words

explosion welding simulation hydrodynamics of smoothed particles deformation cooling rate 

Notes

The study has been financed by a grant of the Russian Scientific Foundation (Project No. 17-72-10226).

References

  1. 1.
    A. A. Deribas, The Physics of Hardening and Explosion Welding [in Russian], Nauka, Novosibirsk (1980), 224 p.Google Scholar
  2. 2.
    I. D. Zakharenko, Explosion Welding of Metals [in Russian], Navuka i Tekhnika, Minsk (1990), 205 p.Google Scholar
  3. 3.
    B. Crossland, Explosive Welding of Metals and Its Application, Oxford University Press, Oxford (1982), 233 p.Google Scholar
  4. 4.
    A. A. A. Mousavi and S. T. S. Al-Hassani, “Numerical and experimental studies of the mechanism of wavy interface formations in explosive/impact welding,” J. Mech. Phys. Solids, 53(11), 2501 – 2508 (2005), doi:  https://doi.org/10.1016/j.jmps.2005.06.001.CrossRefGoogle Scholar
  5. 5.
    A. Nassiri, G. Chini, and B. Kinsey, “Special stability analysis of emergent wave interfacial patterns in magnetic pulsed welding,” CIRP Annals – Manuf. Technol., 63(1), 245 – 248 (2014), doi: https://doi.org/10.1016/j.cirp. 2014.03.023.Google Scholar
  6. 6.
    A. Ben-Artzy, A. Stern, N. Frange, and V. Shribman, “Interface phenomena in aluminum-magnesium magnetic pulse welding,” Sci. Technol. Weld. Join., 13(4), 402 – 408 (2008), doi:  https://doi.org/10.1179/174329308X300136.CrossRefGoogle Scholar
  7. 7.
    I. A. Bataev, D. V. Lazurenko, S. Tanaka, et al., “High cooling rates and metastable phases at the interfaces of explosively welded materials,” Acta Mater., 135, 277 – 289 (2017).CrossRefGoogle Scholar
  8. 8.
    I. A. Bataev, T. S. Ogneva, A. A. Bataev, et al., “Explosively welded multilayer Ni – Al composites,” Mater. Design, 88, 1082 – 1087 (2015), doi:  https://doi.org/10.1016/j.matdes.2015.09.103.CrossRefGoogle Scholar
  9. 9.
    S. P. Kiselev and V. I. Mali, “Numerical and experimental modeling of jet formation during a high-velocity oblique impact of metal plates,” Combust., Explos. Shock Waves, 48(2), 214 – 225 (2012), doi:  https://doi.org/10.1134/S0010508212020116.CrossRefGoogle Scholar
  10. 10.
    A. Mori, S. Tanaka, and K. Hokamoto, “Optical observation of metal jet generated by high speed inclined collision,” in: Proc. SPIE – The International Society for Optical Engineering (2017).Google Scholar
  11. 11.
    I. D. Zakharenko and T. M. Sobolenko, “Thermal effects in the weld zone in explosive welding,” Combust., Explos. Shock Waves, 7(3), 373 – 375 (1971), doi:  https://doi.org/10.1007/BF00742828.CrossRefGoogle Scholar
  12. 12.
    I. D. Zakharenko, “Thermal state of the weld zone in explosive welding,” Combust., Explos. Shock Waves, 7(2), 229 – 231 (1971), doi:  https://doi.org/10.1007/BF00748979.CrossRefGoogle Scholar
  13. 13.
    I. A. Bataev, “Structure of explosively welded materials: experimental study and numerical simulation,” Metal Working Mater. Sci., 77(4), 55 – 67, doi:  https://doi.org/10.17212/1994-6309-2017-4-55-67.
  14. 14.
    A. Nassiri, B. Kinsey, and G. Chini, “Shear instability of plastically-deforming metals in high-velocity impact welding,” J. Mech. Phys. Solids, 95, 351 – 373 (2016), doi:  https://doi.org/10.1016/j.jmps.2016.06.002.CrossRefGoogle Scholar
  15. 15.
    X. J. Li, F. Mo, X. H. Wang, et al., “Numerical study on mechanism of explosive welding,” Sci. Technol. Weld. Join., 17(1), 36 – 41 (2012), doi:  https://doi.org/10.1179/1362171811Y.0000000071.CrossRefGoogle Scholar
  16. 16.
    M. B. Liu, Z. L. Zhang, and D. L. Feng, “A density-adaptive SPH method with kernel gradient correction for modeling explosive welding,” Comput. Mech., 60(3), 513 – 529 (2017), doi:  https://doi.org/10.1007/s00466-017-1420-5.CrossRefGoogle Scholar
  17. 17.
    M. A. Meyers, Dynamic Behavior of Materials, John Wiley & Sons, New York (1994), 668 p.Google Scholar
  18. 18.
    G. R. Johnson, “A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures,” in: Proc. 7th Int. Symp. on Ballistics, The Hague, Netherlands (1983), pp. 541 – 547.Google Scholar
  19. 19.
    Q. Zhou, J. Feng, and P. Chen, “Numerical and experimental studies on the explosive welding of tungsten foil to copper,” Materials, 10(9) (2017), doi:  https://doi.org/10.3390/ma10090984.
  20. 20.
    A. A. Popov and L. E. Popova, Handbook of Heat Treatment Specialist: Isothermal and Thermokinetic Diagrams of Decomposition of Supercooled Austenite [in Russian], Mashgiz, Moscow (1961).Google Scholar
  21. 21.
    I. A. Bataev, A. A. Bataev, V. I. Mali, et al., “Formation and structure of vortex zones arising upon explosion welding of carbon steels,” Phys. Met. Metallogr., 113(3), 233 – 240 (2012), doi:  https://doi.org/10.1134/S0031918X12030039.CrossRefGoogle Scholar
  22. 22.
    I. A. Bataev, D. V. Lazurenko, Yu. N. Malyutina, et al., “Super-high cooling rates at the interface of explosion-welded materials and their effect on formation of structure in mixing zones,” Fiz. Goren. Vzryva, 54(2), 122 – 130 (2018), doi:  https://doi.org/10.15372/FGV20180213.Google Scholar
  23. 23.
    W. D. Liu, K. X. Liu, Q. Y. Chen, et al., “Metallic glass coating on metals by adjusted explosive welding technique,” Appl. Surf. Sci., 255(23), 9343 – 9347 (2009), doi:  https://doi.org/10.1016/j.apsusc.2009.07.033.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. A. Bataev
    • 1
    Email author
  • I. V. Ivanov
    • 1
  • Yu. N. Malyutina
    • 1
  • K. I. Émurlaev
    • 1
  • Yu. Yu. Émurlaeva
    • 1
  1. 1.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations