Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 9–10, pp 619–624 | Cite as

Surface Hardening of Titanium Under Non-Vacuum Electron-Beam Cladding of an Aluminum-Containing Powder Mixture

  • I. A. BataevEmail author
  • D. V. Lazurenko
  • M. G. Golkovskii
  • A. A. Bataev
  • O. E. Matts
ELECTRON-BEAM TREATMENT
  • 13 Downloads

Special features of the structure of surface layers formed on billets of commercial-purity titanium VT1-0 by cladding a powder aluminum-titanium mixture with an electron beam removed into air atmosphere are studied. X-ray phase analysis and transmission electron microscopy are used to show that the material remelted by the electron beam is Ti3Al titanium aluminide. The hardness of the deposited layer is 540 – 610 HV. The behavior of the material is studied under the conditions of sliding friction and friction against fixed abrasive particles. The results reflect decrease in the friction factor and increase in the wear resistance of the clad material as compared to commercially pure titanium.

Key words

titanium electron beam cladding titanium aluminide structure properties 

Notes

The work has been performed with financial assistance of the Russian Foundation for Basic Research within Scientific Project No. 15-38-20776mol a ved.

References

  1. 1.
    M. Salehi and R. Hosseini, “Structural characterization of novel Ti-Cu intermetallic coatings,” Surf. Eng., 12, 221 – 224 (1996).CrossRefGoogle Scholar
  2. 2.
    V. E. Oliker, S. N. Endrzheevskaya, V. D. Dobrovol’skii, et al., “Structure and properties of atomized coatings of intermetallic Fe – Ti and Ni – Ti powders,” Powder Metall. Met. Ceram., 32, 222 – 225 (1993).CrossRefGoogle Scholar
  3. 3.
    M. N. Mokgalaka, S. L. Pityana, P. A. I. Popoola, et al., “NiTi intermetallic surface coatings by laser metal deposition for improving wear properties of Ti – 6Al – 4V substrates,” Adv. Mater. Sci. Eng., 2014, Art. 363917 (2014).Google Scholar
  4. 4.
    Y. Zhang, H. Li, and K. Zhang, “Investigation of the laser melting deposited TiAl intermetallic alloy on titanium alloy,” Adv. Mater. Res., 146 – 147, 1638 – 1641 (2011).Google Scholar
  5. 5.
    B. A. Grinberg and M. A. Ivanov, Ni 3 Al and TiAl Intermetallics: Microstructure and Deformation Behavior [in Russian], UrO RAN, Ekaterinburg (2002), 360 p.Google Scholar
  6. 6.
    G. Sauthoff, Intermetallics, Weinheim, VCH, New York, Basel, Cambridge, Tokyo (1995), 165 p.Google Scholar
  7. 7.
    K. S. Vecchio, “Synthetic multifunctional metallic-intermetallic laminate composites,” JOM, 57(3), 25 – 31 (2005).Google Scholar
  8. 8.
    A. V. Kartavykh, S. D. Kaloshkin, V. V. Cherdyntsev, et al., “Application of microstructured intermetallics in turbine manufacture. Pt. 1. Present state and prospects (a review),” Inorg. Mater., Appl. Res., 4(1), 12 – 20 (2013).CrossRefGoogle Scholar
  9. 9.
    S. V. Chernobay, “Welding of alloys of titanium aluminides (a review),” Avtomat. Svarka, No. 8, 26 – 31 (2013).Google Scholar
  10. 10.
    A. F. Vaisman, M. G. Golkovskii, A. I. Korchagin, et al., “Technological applications of industrial electron accelerators of ELV series,” in: M. Markovits and J. Shiloh (eds.), BEAMS’98, Proc. 12th Int. Conf. on High-Power Particle Beams, Rafael, Israel; IEEE, New York (1998), Vol. 2, pp. 1039 – 1044.Google Scholar
  11. 11.
    I. Bataev, D. Mul, A. Bataev, et al., “Structure and tribological properties of steel after non-vacuum electron beam cladding of Ti, Mo and graphite powders,” Mater. Charact., 112, 60 – 67 (2016).CrossRefGoogle Scholar
  12. 12.
    I. Bataev, M. Golkovskii, A. Bataev, et al., “Surface hardening of steels with carbon by non-vacuum electron-beam processing,” Surf. Coat. Technol., 242, 164 – 169 (2014).CrossRefGoogle Scholar
  13. 13.
    D. O. Mul’, N. S. Belousova, D. S. Krivezhenko, et al., “Electron-beam deposition of titanium- and tantalum-containing powder mixtures on specimens of steel 40Kh,” Obrab. Met., Tekhnol., Obordud., Instr., No. 2(63), 117 – 126 (2014).Google Scholar
  14. 14.
    M. G Golkovskii, I. A. Bataev, A. A. Bataev, et al., “Atmospheric electron-beam surface alloying of titanium with tantalum,” Mater. Sci. Ang. A, Struct. Mater. Prop. Microstruct. Proc., 578, 310 – 317 (2013).Google Scholar
  15. 15.
    O. Lenivtseva, I. Bataev, M. Golkovskii, et al., “Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon,” Appl. Surf. Sci., 355, 320 – 326 (2015).CrossRefGoogle Scholar
  16. 16.
    S. A. Saltykov, Stereometric Metallography [in Russian], Metallurgiya, Moscow (1970), 376 p.Google Scholar
  17. 17.
    J. C. Rawers and D. E. Alman, “Fracture characteristics of metal/intermetallic laminar composites produced by reaction sintering and hot pressing,” Comp. Sci. Technol., 54(4), 379 – 384 (1995).CrossRefGoogle Scholar
  18. 18.
    Yu. P. Trykov, V. N. Arisova, S. A. Volobuev, et al., “Examination of the fine structure of the weld zone of explosion-welded titanium-steel joints,” Weld. Int., 13(1), 64 – 66 (1999).CrossRefGoogle Scholar
  19. 19.
    Yu. P. Trykov, “Complex technological processes of production of composite materials and articles,” Nauka Proizvod., No. 1, 20 – 23 (2000).Google Scholar
  20. 20.
    Yu. P. Trykov and V. G. Shmorgun, Properties and Operating Capacity of Laminar Composites [in Russian], Politekhnik, Volgograd (1999), 189 p.Google Scholar
  21. 21.
    J. Kajuch, J. Short, and J. J. Lewandowski, “Deformation and fracture behavior of Nb in Nb5Si3 /Nb laminates and its effect of laminate toughness,” Acta Meall. Mater., 43(5), 1955 – 1967 (1995).CrossRefGoogle Scholar
  22. 22.
    I. A. Bataev, A. A. Bataev, V. I. Mali, et al., “Nucleation and growth of titanium aluminide in explosion-welded laminar composite,” Fiz. Met. Metalloved., 113(10), 998 – 1007 (2012).Google Scholar
  23. 23.
    D. Lazurenko, I. Bataev, V. Mali, et al., “Explosively welded multilayer Ti – Al composites: structure, and transformation during heat treatment,” Mater. Design, 102, 122 – 130 (2016).CrossRefGoogle Scholar
  24. 24.
    Jean-Marie Dubois, “An introduction to complex metallic alloys and to the CMAnetwork of excellence,” in: Basics of Thermodynamics and Phase Transitions in Complex Intermetallics, World Scientific Publishing, Singapore (2008), pp. 1 – 31.Google Scholar
  25. 25.
    G. V. Samsonov and I. M. Vinnitskii, Refractory Compounds [in Russian], Metallurgiya, Moscow (1976).Google Scholar
  26. 26.
    V. R. Ryabov, Welding of Aluminum and Its Alloys with Other Metals [in Russian], Naukova Dumka, Kiev (1983), 264 p.Google Scholar
  27. 27.
    Ge. E. Totten and D. Scott MacKenzie (eds.), Handbook of Aluminum. Vol. 2. Alloy Production and Materials Manufacturing, Marcel Dekker Inc., New York, Basel (2003), 724 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. A. Bataev
    • 1
    Email author
  • D. V. Lazurenko
    • 1
  • M. G. Golkovskii
    • 2
  • A. A. Bataev
    • 1
  • O. E. Matts
    • 1
  1. 1.Novosibirsk State Technical UniversityNovosibirskRussia
  2. 2.Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations