Metal Science and Heat Treatment

, Volume 60, Issue 7–8, pp 534–538 | Cite as

Magnetic Domain Structure of Cobalt and Iron Borides

  • O. V. ZhdanovaEmail author
  • M. B. Lyakhova
  • K. E. Akimova
  • E. M. Semenova
  • A. Yu. Karpenkov
  • D. Yu. Karpenkov

The method of slow cooling from melting temperature is used to obtain coarse-grain ingots of (FexCo1 – x)2B with columnar structure. It is shown that at room temperature the configuration of the domain structure of the specimens of (FexCo1 – x)2B corresponds to magnetocrystalline anisotropy (MCA) of different types. Alloys Fe2B, (Fe0.4Co0.6)2B, (Fe0.2Co0.8)2B and Co2B exhibit MCA of the type of a “plane of easy axes.” Alloy (Fe0.92Co0.08)2B has a state with spin-reorientation transition of type “easy axis” – “plane of easy axes”.

Key words

magnetic domain structure microstructure magnetocrystalline anisotropy spin-reorientation transition 


The work has been performed with support of the Ministry of Education and Science of the Russian Federation, Grant No. 3.7849.2017_BCh.


  1. 1.
    A. Iga, “Magnetocrystalline anisotropy in (Fe1 – xCox)2B system,” Jap. J. Appl. Phys., 9(4), 415 – 416 (1970).CrossRefGoogle Scholar
  2. 2.
    M. C. Cadeville and I. Vince, “Nuclear magnetic resonance of Co in (FexCox)2B ferromagnetic borides,” J. Phys. F: Metal Phys., 5(4), 790 – 799 (1975).CrossRefGoogle Scholar
  3. 3.
    L. Takacs, M. C. Cadeville, and I. Vincze, “Mössbauer study of the intermetallic compounds (Fe1 – xCox)2B and (Fe1 – xCox)B,” J. Phys. F: Metal Phys., 5, 800 (1975).CrossRefGoogle Scholar
  4. 4.
    W. Coene, F. Hakkens, R. Coehoorn, et al., “Magnetocrystalline anisotropy of Fe3B, Fe2B and Fe1.4Co0.6B as studied by Lorentz electron microscopy, singular point detection and magnetization measurements,” J. Magn. Magn. Mater., 96(1 – 3), 189 – 196 (1991).CrossRefGoogle Scholar
  5. 5.
    M. D. Kuz’min, K. P. Skokov, H. Jian, et al., “Towards high-performance permanent magnets without rare earths,” J. Phys. Cond. Matter, 26(6), 064205 (2014).CrossRefGoogle Scholar
  6. 6.
    A. Edström, M. Werwinski, D. Iusan, et al., “Magnetic properties of (Fe1 – xCox)2B alloys and the effect of doping by 5d elements,” Phys. Rev. B, 92(17), 174413 (2015).CrossRefGoogle Scholar
  7. 7.
    M. B. Lyakhova, E. M. Semenova, K. P. Skokov, et al., “Domain structure of R2M17 (M = Fe, Co) single crystals with magnetocrystalline anisotropy of “easy plane” type,” Gorn. Inform.-Anal. Byul., 12(12), 404 – 413 (2007).Google Scholar
  8. 8.
    S. S. Kabanov, M. B. Lyakhova, O. V. Zhdanova, et al., “Microand domain structure of iron and cobalt borides,” Vest. Tver. Gos. Univers., Ser. Fiz., No. 1, 12 – 19 (2014).Google Scholar
  9. 9.
    C. Kittel, “The physical theory of ferromagnetic domains of spontaneous magnetization,” in: The Physics of Ferromagnetic Domains [Russian translation], Inostr. Literatura, Moscow (1951), pp. 19 – 116.Google Scholar
  10. 10.
    A. Hubert and R. Schafer, Magnetic Domains. The Analysis of Magnetic Microstructures, Springer (1998), 720 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. V. Zhdanova
    • 1
    Email author
  • M. B. Lyakhova
    • 1
  • K. E. Akimova
    • 1
  • E. M. Semenova
    • 1
  • A. Yu. Karpenkov
    • 1
  • D. Yu. Karpenkov
    • 2
  1. 1.Tver State UniversityTverRussia
  2. 2.NTP “Baltika,” Baltic Federal University after Immanuel KantKaliningradRussia

Personalised recommendations