Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 7–8, pp 498–503 | Cite as

Structure and Properties of Sm – Co – Fe – Cu – Zr Magnets for High-Temperature Applications

  • V. N. Beketov
  • V. N. Moskalev
  • D. V. Taranov
  • A. V. Ogurtsov
  • M. K. Sharin
  • A. G. Popov
  • V. S. Gaviko
  • O. A. Golovnya
  • A. V. Protasov
  • E. G. Gerasimov
  • P. B. Terent’ev
  • V. V. Popov
Article
  • 16 Downloads

Sm – Co – Fe – Cu – Zr sintered high-temperature permanent magnets (HTPM) produced by the “POZ-Progress” Company are studied. The microstructure of the magnets is determined by scanning electron microscopy and x-ray diffraction analysis. The Curie temperature and the magnetic properties of the materials are described. The hysteresis loops of the magnets are measured in strong pulsed fields at room and elevated temperatures. The temperature dependence of the magnetic susceptibility is plotted using the method of compensated transformer in a variable magnetic field.

Key words

Sm Co Fe Cu Zr alloys, high-temperature permanent magnets, phase composition, coercivity, temperature stability 

Notes

Acknowledgments

The work has been performed within a State Assignment of the Federal Agency of Scientific Organizations of Russia (Topic “Magnet” No. AAAA-A18118020290129-5) with partial support of a grant of the Fustian Foundation for Basic Research (Project No. 17-52-80072).

References

  1. 1.
    A. G. Popov, “Temperature dependence of H c of Sm(Co, Fe, Cu, Zr)7.3 alloys,” in: Theses of Reports of VIII All-Union Conference of Permanent Magnets [in Russian], Suzdal (1988), p. 4.Google Scholar
  2. 2.
    A. G. Popov, A. V. Korolev, and N. N. Shchegoleva, “Temperature dependence of the coercivity of Sm(Co, Fe, Cu, Zr)7.3 alloys,” Fiz. Met. Metalloved., No. 3, 100 – 105, (1990).Google Scholar
  3. 3.
    J. F. Liu, T. Chui, D. Dimitrov, and G. C. Hadjipanayis, “Abnormal temperature dependence of intrinsic coercivity in Sm(Co, Fe, Cu, Zr)z powder materials,” Appl. Phys. Lett., 73, 3007 – 3009 (1998).Google Scholar
  4. 4.
    H. Chen, M. S. Walmer, M. H. Walmer, et al., “Sm2(Co, Fe, Cu, Zr)17 magnets for use at temperature > 400°C,” J. Appl. Phys., 83, 6706 – 6708 (1998).Google Scholar
  5. 5.
    J. F. Liu, Y. Ding, Y. Zhang, et al., “New rare-earth permanent magnets with an intrinsic coercivity of 10 kOe at 500°C,” J. Appl. Phys., 85, 5660 – 5662 (1999).Google Scholar
  6. 6.
    C. H. Chen, M. S.Walmer,M. H.Walmer, et al., “Magnetic pinning strength for the new Sm-TM magnetic materials for use up to 550°C,” J. App. Phys., 87, 6719 – 6721 (2000).Google Scholar
  7. 7.
    Y. Zhang, M. Corte-Real, G. C. Hadjipanayis, “Magnetic hardening studies in sintered Sm(Co, Cu, Fe, Zr)z 2:17 high temperature magnets,” J. Appl. Phys., 87, 6722 – 6724 (2000).Google Scholar
  8. 8.
    G. C. Hadjipanayis, W. Tang, Y. Zhang, et al., “High temperature 2:17 magnets: relationship of magnetic properties to microstructure and processing,” IEEE Trans. Magn., 36, 3382 – 3387 (2000).Google Scholar
  9. 9.
    W. Tang, A. M. Gabay, Y. Zhang, et al., “Temperature dependence of coercivity and magnetization reversal mechanism in Sm(CobalFe0.1CuyZr0.04)7.0 magnets,” IEEE Trans. Magn., 37, 2515 – 2517 (2001).Google Scholar
  10. 10.
    W. Tang, Y. Zhang, A. M. Gabay, and G. C. Hadjipanayis, “Anomalous temperature dependence of coercivity in rare earth cobalt magnets,” J. Magn. Magn. Mater., 242, 1335 – 1337 (2002).Google Scholar
  11. 11.
    Walmer, et al., High Temperature Permanent Magnets, Patent US 06451132, Publ. 17.09.2002.Google Scholar
  12. 12.
    J. F. Liu and M. S.Walmer, “Design with high performance rare earth permanent magnets,” in: Proc. 18th Int. Workshop on High Performance Magnets and their Applications, Annecy, France (2004), pp. 630 – 636.Google Scholar
  13. 13.
    R. K. Mishra, G. Thomas, T. Yoneyama, et al., “Microstructure and properties of step aged rare earth alloy magnets,” J. Appl. Phys., 52, 1517 – 2519 (1981).Google Scholar
  14. 14.
    R. M. W. Strnat, S. Liu, and K. J. Strnat, “Thermal stability and temperature coefficients of four rare-earth-cobalt matrix magnets heated in dry air,” J. Appl. Phys., 53, 2380 – 2382 (1982).Google Scholar
  15. 15.
    S. Liu, H. F. Mildrum, and K. J. Strnat, “Demagnetization curves of four rare-earth-cobalt magnet types at temperatures 300 – 1000 K,” J. Appl. Phys., 53, 2383 – 2385 (1982).Google Scholar
  16. 16.
    L. Rabenberg, R. K. Mishra, and G. Thomas, “Microstructure of precipitation-hardened SmCo permanent magnets,” Appl. Phys., 53(3), 2389 – 2391 (1982).CrossRefGoogle Scholar
  17. 17.
    P. Fidler and J. Skalicky, “Microstructure of precipitation-hardened cobalt-rare earth permanent magnets,” J. Magn. Magn. Mater., 27(2), 127 – 131 (1982).CrossRefGoogle Scholar
  18. 18.
    E. I. Teytel, A. G. Popov, V. G. Maykov, et al., “A study of the phase composition, structure and magnetic properties of alloy Sm2Co10Cu3.2Fe1.2Zr0.4,” Fiz. Met. Metalloved., 55(2), 349 – 357 (1983).Google Scholar
  19. 19.
    K.-D. Durst, H. Kronmuller, and W. Ervens, “Investigation of the magnetic properties and demagnetization processes of extremely high coercive Sm(Co, Cu, Fe, Zr)7.6 permanent magnet. 1. Determination of intrinsic magnetic material parameters,” Phys. Slat. Sol. (a), 108(1), 403 – 416 (1988).Google Scholar
  20. 20.
    R. Gopalan, T. Ohkubo, and K. Hono, “Identification of the cell boundary phase in the isothermally aged commercial Sm(Co0.725Fe0.1Cu0.12Zr0.04)7.4 sintered magnet,” Scr. Mater., 54, 1345 – 1349 (2006).Google Scholar
  21. 21.
    B. N. Beketov, V. N. Moskalev, A. V. Ogurtsov, et al., “SmCoFeCuZr permanent magnets with elevated service temperature from 400 to 600°C,” in: Theses of Reports of XIX International Conference of Permanent Magnets [in Russian], Suzdal (2013), p. 132.Google Scholar
  22. 22.
    V. N. Beketov, V. N. Moskalev, A. V. Ogurtsov, et al., in: Theses of Reports of XX International Conference of Permanent Magnets [in Russian], Suzdal (2015), p. 116.Google Scholar
  23. 23.
    A. G. Popov, D. Yu. Vasilenko, T. Z. Puzanova, et al., “Effect of the size of powder particles and concentration of adsorbed oxygen on microstructure and magnetic hysteresis properties of sintered Sm – Co – Fe – Cu – Zr magnets,” Zh. Funkts. Mater., 1(12), 449 – 455 (2007).Google Scholar
  24. 24.
    H. Sepehri-Amin, J. Thielsch, J. Fischbacher, et al., “Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of Sm(Co0.784Fe0.100Cu0.088Zr0.028)7.19 sintered magnets,” Acta Mater., 126, 1 – 10 (2017).Google Scholar
  25. 25.
    N. Yu, M. Zhu, Y. Fang, et al., “The microstructure and magnetic characteristics of Sm(CobalFe0.1Cu0.09Zr0.03)7.24 high temperature permanent magnets,” Scr. Mater., 132, 44 – 48 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. N. Beketov
    • 1
  • V. N. Moskalev
    • 1
  • D. V. Taranov
    • 1
  • A. V. Ogurtsov
    • 1
  • M. K. Sharin
    • 1
  • A. G. Popov
    • 2
    • 3
  • V. S. Gaviko
    • 2
    • 3
  • O. A. Golovnya
    • 2
    • 3
  • A. V. Protasov
    • 2
    • 3
  • E. G. Gerasimov
    • 2
    • 3
  • P. B. Terent’ev
    • 2
    • 3
  • V. V. Popov
    • 4
  1. 1.“POZ-Progress” CompanyVerkhnyaya PyshmaRussia
  2. 2.M. N. Mikheev Institute for Metals Physics of the Ural Branch of the Russian Academy of SciencesEkaterinburgRussia
  3. 3.Institute of Natural Sciences and MathematicsUral Federal UniversityEkaterinburgRussia
  4. 4.Israel Institute of MetalsHaifaIsrael

Personalised recommendations