Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 7–8, pp 471–477 | Cite as

Structural-Morphological Fluctuations Induced by Thermomechanical Treatment in a Fe – Mn – Si Shape Memory Alloy

  • N. Cimpoesu
  • E. Mihalache
  • N.-M. Lohan
  • M.-G. Suru
  • R. I. Comãneci
  • B. Özkal
  • L.-G. Bujoreanu
  • B. Pricop
Article
  • 12 Downloads

Variation of the sizes and chemical compositions of martensite plates in the structure of powder-metallurgy shape memory alloy Fe – 14 wt.% Mn – 6 wt.% Si – 9 wt.% Cr – 5 wt.% Ni is studied. Apart of the specimens is fabricated from mechanically alloyed powder. Tensile tests of the alloy are performed after 4% deformation and after deformation and heat treatment at 700 and 1100°C. The effect of the treatment on the structure of the alloy is determined.

Key words

shape memory effect alloys of the Fe – Mn – Si – Cr – Ni system mechanical alloying preliminary deformation scanning electron microscopy energy dispersive analysis 

Notes

The work has been supported by UEFISCDI through project code PN-II-ID-PCE-2012-4-0033 (Contract 13_2013).

References

  1. 1.
    A. Sato, E. Chishima, K. Soma, and T. Mori, Acta Metall., 30(6), 1177 (1982).CrossRefGoogle Scholar
  2. 2.
    A. Sato, K. Soma, and T. Mori, Acta Metall., 30(10), 1901 (1982).CrossRefGoogle Scholar
  3. 3.
    A. Sato, E. Chishima, Y. Yamaji, and T. Mori, Acta Metall., 32(4), 539 (1984).CrossRefGoogle Scholar
  4. 4.
    M. Murakami, H. Suzuki, and Y. Nakamura, Trans. ISIJ, 27, B-87 (1987).Google Scholar
  5. 5.
    M. Murakami, H. Otsuka, H. Suzuki, and M. Matsuda, Trans. ISIJ, 27, B-88 (1987).Google Scholar
  6. 6.
    M. Murakami, H. Otsuka, and S. Matsuda, Trans. ISIJ, 27, B-89 (1987).Google Scholar
  7. 7.
    H. Ostuka, H. Yamada, T. Maruyama, et al., ISIJ Int., 30, 674 (1990).CrossRefGoogle Scholar
  8. 8.
    Y. Moriya, H. Kimura, S. Ishizaki, et al., J. Phys. IV France, 01, 433 (1991).CrossRefGoogle Scholar
  9. 9.
    T. Maki, Shape Memory Materials, Cambridge University Press (1998), p. 117.Google Scholar
  10. 10.
    D. Dunne, Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques, Woodhead Publishing (2012), Vol. 2, p. 83.Google Scholar
  11. 11.
    G. J. Arridam, V. T. L. Buono, and M. S. Andrade, Mater. Sci. Eng. A, 273–275, 528 (1999).Google Scholar
  12. 12.
    Y. H. Wen, N. Li, and L. R. Xiong, Mater. Sci. Eng. A, 407, 31 (2005).CrossRefGoogle Scholar
  13. 13.
    Z. Shang, R. Sandström, K. Frisk, and A. Salwen, Powder Technol., 137, 139 (2003).CrossRefGoogle Scholar
  14. 14.
    T. Liu, H. Y. Liu, Z. T. Zhao, et al., Mater. Sci. Eng. A, 271, 8 (1999).CrossRefGoogle Scholar
  15. 15.
    A. U. Söyler, B. Özkal, and L. G. Bujoreanu, J. Mater. Eng. Perform., 23(7), 2357 (2014).CrossRefGoogle Scholar
  16. 16.
    T. Saito, K. Gąska, A. Takasaki, and C. Kapusta, J. Mekanikal., 30, 62 (2010).Google Scholar
  17. 17.
    T. Saito, C. Kapusta, and A. Takasaki, Mater. Sci. Eng. A, 592, 88 (2014).CrossRefGoogle Scholar
  18. 18.
    R. Amini, A. Shamsipoor, M. Ghaffari, et al., Mater. Charact., 84, 169 (2013).CrossRefGoogle Scholar
  19. 19.
    L. G. Bujoreanu, S. Stanciu, B. Özkal, et al., ESOMAT, 2009, 05003.Google Scholar
  20. 20.
    P. Pricop, U. Söyler, R. I. Comãneci, et al., Phys. Proc., 10, 125 (2010).CrossRefGoogle Scholar
  21. 21.
    B. Pricop, U. Söyler, N. M. Lohan, et al., J. Optoelectron. Adv. Mater., 5(5), 555 (2011).Google Scholar
  22. 22.
    B. Pricop, U. Söyler, N. M. Lohan, et al., J. Mater. Eng. Perform., 21(11), 2407 (2012).CrossRefGoogle Scholar
  23. 23.
    B. Pricop, U. Söyler, B. Özkal, et al., Mater. Sci. Forum, 738 – 739, 237 (2013).Google Scholar
  24. 24.
    B. Pricop, B. Özkal, U. Söyler, et al., Optoelectron. Adv. Mater., 8(3 – 4), 247 (2014).Google Scholar
  25. 25.
    A. U. Söyler, B. Özkal, L. G. Bujoreanu, TMS Suppl. Proc., 1, 577 (2011).CrossRefGoogle Scholar
  26. 26.
    A. U. Söyler, B. Özkal, L. G. Bujoreanu, TMS Suppl. Proc., 3, 785 (2010).Google Scholar
  27. 27.
    I. P. Siridon, B. Pricop, M. G. Suru, et al., J. Optoecentron. Adv. Mater., 15(7 – 8), 730 (2013).Google Scholar
  28. 28.
    J. Ma, B. Kockar, A. Evirgen, et al., Acta Mater., 60, 2186 (2012).CrossRefGoogle Scholar
  29. 29.
    S. Kajiwara, Mater. Sci. Eng. A, 273 – 275, 67 (1999).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. Cimpoesu
    • 1
  • E. Mihalache
    • 1
  • N.-M. Lohan
    • 1
  • M.-G. Suru
    • 1
  • R. I. Comãneci
    • 1
  • B. Özkal
    • 2
  • L.-G. Bujoreanu
    • 1
  • B. Pricop
    • 1
  1. 1.Faculty of Materials Science and Engineering“Gheorghe Asachi” Technical University of IasiIasiRomania
  2. 2.Particulate Materials Laboratory, Metallurgical and Materials Engineering DepartmentIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations