Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 7–8, pp 454–456 | Cite as

Rapid Salt Bath Nitriding of Steel AISI 1045

  • Mingyang Dai
  • Chaoyu Li
  • Yating Chai
  • Jing Hu
Article
  • 6 Downloads

Carbon steel AISI 1045 (0.45% C) is studied as a model material for rapid nitriding in a salt bath at 660°C (instead of the conventional 560°C). The methods of optical microscopy, x-ray diffraction and measurement of microhardness and corrosion resistance are used to study the microstructure and the phase composition of the nitrided layer. It is shown that salt bath nitriding shortens the process considerably and raises its efficiency; the microhardness and the corrosion resistance grow and the nitride layer acquires a γ′-Fe4N phase.

Key words

carbon steel salt bath nitriding hardness x-ray diffraction 

Notes

This research has been supported by PAPD of Jiangsu Higher Educational Institutions, Jiangsu Province Graduate Student Innovation Fund (SCZ100431322) and Jiangsu Government Scholarship for Overseas Studies under Grant No. JS-2012-173.

References

  1. 1.
    X. J. Yang, “Low cycle fatigue and cyclic stress ratcheting failure behavior of carbon steel 45 under uniaxial cyclic loading,” Int. J. Fatigue, 27, 1124 – 1132 (205).Google Scholar
  2. 2.
    W. Cai, F. N. Meng, X. Y. Gao, et al., “Effect of QPQ nitriding time on wear and corrosion behavior of 45 carbon steel,” Appl. Surf. Sci., 261, 411 – 414 (2012).CrossRefGoogle Scholar
  3. 3.
    W. Li, Q. Yan, and J. H. Xue, “Analysis of a crankshaft fatigue failure,” Eng. Fail. Anal., 55, 139 – 147 (2015).CrossRefGoogle Scholar
  4. 4.
    Z. S. Zhou, M. Y. Dai, Z. Y. Shen, et al., “A novel rapid D.C. salt bath nitrocarburizing technology,” Vacuum, 109, 144 – 147 (2014).CrossRefGoogle Scholar
  5. 5.
    L. I. Kuksenova, S. A. Polyakov, V. G. Lapteva, and M. S. Alekseeva, “Mechanical properties of surface layers of structural steels after nitriding and possibilities of adaptation of their nanostructure to contact deformation,” Metal Sci. Heat Treat., 57(7 – 8), 436 – 442 (2015).CrossRefGoogle Scholar
  6. 6.
    Z. S. Zhou, and J. Hu, “Kinetic analysis of direct current field enhanced salt bath nitriding,” Surf. Eng., No. 8, 612 – 615 (2015).Google Scholar
  7. 7.
    F. L. Meng and I. Baker, “Nitriding of a high entropy FeNiMnAlCr alloy,” J. Alloy Compd., 645, 376 – 381 (2015).CrossRefGoogle Scholar
  8. 8.
    M. Y. Dai, Y. Chen, Y. T. Chai, et al., “Kinetics analysis of higher temperature salt bath nitriding for AISI 1045 steel,” Surf. Rev. Lett., 23, 1650049 (5 pages) (2016).Google Scholar
  9. 9.
    H. Y. Li, D. F. Luo, C. F. Yeung, et al., “Microstructural studies of QPQ complex salt bath heat-treated steels,” J. Mater. Proc. Technol., 69, 45 – 49 (1997).CrossRefGoogle Scholar
  10. 10.
    Z. S. Zhou, M. Y. Dai, Z. Y. Shen, et al., “Effect of DC electric field on salt bath nitriding for 35 steel and kinetics analysis,” J. Alloy Compd., 623, 261 – 265 (2014).CrossRefGoogle Scholar
  11. 11.
    M. F. Yan and R. L. Liu, “Influence of process time on microstructure and properties of 17 – 4PH steel plasma nitrocarburized with rare earths addition at low temperature,” Appl. Surf. Sci., 256, 6065 – 6071 (2010).CrossRefGoogle Scholar
  12. 12.
    E. Balikci and O. Yaman, “Investigation on liquid bath nitriding of selected steels,” Surf. Eng., 27, 609 – 615 (2011).CrossRefGoogle Scholar
  13. 13.
    N. Krishnaraj, K. J. L. Iyer, and S. Sundaresan, “Scuffing resistance of salt bath nitrocarburized medium carbon steel,” Wear, 210, 237 – 244 (1997).CrossRefGoogle Scholar
  14. 14.
    S. Y. Sirin, K. Sirin, and E. Kaluc, “Effect of the ion nitriding surface hardening process on fatigue behavior of AISI 4340 steel,” Mater. Charact., 59, 351 – 358 (2008).CrossRefGoogle Scholar
  15. 15.
    J. C. Diaz-Guillen, G. Vargas-Gutierrez, and E. E. Granda-Gutierrez, “Surface properties of Fe4N compounds layer on AISI 4340 steel modified by pulsed plasma nitriding,” J. Mater. Sci. Technol., 29, 287 – 290 (2013).CrossRefGoogle Scholar
  16. 16.
    J. Stein, R. E. Schacher, M. S. Jung, et al., “Solubility of nitrogen in ferrite; the Fe – N diagram,” Int. J. Mater. Res., 11, 1053 – 1065 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mingyang Dai
    • 1
  • Chaoyu Li
    • 2
  • Yating Chai
    • 1
  • Jing Hu
    • 1
    • 2
    • 3
  1. 1.School of Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and TechnologyChangzhou UniversityChangzhouChina
  2. 2.Jiangsu Collaborative Innovation Center of Photovoltaic Science and EngineeringChangzhou UniversityChangzhouChina
  3. 3.Materials Research and Education CenterAuburn UniversityAuburnUSA

Personalised recommendations