Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 7–8, pp 443–449 | Cite as

Influence of the Chemical Composition of Al/AlC/a-C:H Coatings on the Mechanical Properties of Magnesium Alloy AZ31

  • Ł. Kaczmarek
  • M. Klich
  • W. Tuta
  • K. Kyzioł
  • P. Kuoetrowski
  • D. Batory
  • W. Szymañski
  • M. Stegliñski
  • D. Kottfer
Article
  • 16 Downloads

The composition of wear-resistant Al/AlC/a-C:H coatings deposited on a magnesium alloy by combination of radio frequency plasma assisted chemical vapor deposition and magnetron sputtering is studied. It is shown that the mechanical properties of the coatings vary depending on the composition of the amorphous C:H layers after changing the negative bias polarization of the process from 150 to 600 V; the carbon structure may be varied from a disordered one to a graphite one as well as the sp2/sp3 bonds ratio.

Key words

chemical vapor deposition diamond-like carbon functional coating gradient interlayer wear friction magnesium alloy 

Notes

The present work has been supported by the Polish State Committee for Scientific Research (Project No. NN 507 269540) and by the European Commission in the framework of the ERA. Net RUS Plus Program (Project LIGHTMAT4SPACE: Lightweight Nanocrystalline Aluminum-Based Material for Space Applications; modelling and technology verification).

References

  1. 1.
    H. Pan, Y. Ren, H. Fu, et al., “Recent developments in rare-earth free wrought magnesium alloys having high strength: A Review,” J. Alloys Compd., 663, 321 – 331 (2016).CrossRefGoogle Scholar
  2. 2.
    G. Arruebarrena, “Weight reduction in aircraft by means of new magnesium castings,” Mater. Sci. Technol. Conf. Proc., 3, 13 – 20 (2005).Google Scholar
  3. 3.
    S. Dasa, A. Morales, and A. T. Alpasa, “Microstructural evolution during high temperature sliding wear of Mg – 3% Al – 1% Zn (AZ31) alloy,” Wear, 268, 94 – 103 (2010).CrossRefGoogle Scholar
  4. 4.
    B. Hengyong, M. Yandouzi, C. Lu, and B. Jodin, “Effect of heat treatment on the intermetallic layer of cold sprayed aluminum coatings on magnesium alloy,” Surf. Coat. Technol., 205, 4665 – 4671 (2011).CrossRefGoogle Scholar
  5. 5.
    B. S. DeForce, T. J. Eden, and J. K. Potter, “Cold spray Al – 5% Mg coatings for the corrosion protection of magnesium alloys,” J. Therm. Spray Technol., 20, 1352 – 1358 (2011).CrossRefGoogle Scholar
  6. 6.
    Z. Zhang, G. Yu, Y. Ouyang, et al., “Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D,” Appl. Surf. Sci., 255, 7773 – 7779 (2009).CrossRefGoogle Scholar
  7. 7.
    K. Dong, Y. Song, D. Shan, and E. H. Han, “Formation mechanism of a self-sealing pore micro-arc oxidation on AM60 magnesium alloy,” Surf. Coat. Technol., 266, 188 – 196 (2015).CrossRefGoogle Scholar
  8. 8.
    H. Gaoa, M. Zganga, X. Yangb, et al., “Effect of Na2SiO3 solution concentration of micro-arc oxidation process on lap-shear strength of adhesive-bonded magnesium alloys,” Appl. Surf. Sci., 314, 447 – 452 (2014).CrossRefGoogle Scholar
  9. 9.
    O. Tazegul, F. Muhaffel, O. Meydanoglu, et al., “Wear and corrosion characteristics of novel alumina coatings produced by micro arc oxidation on AZ91D magnesium alloy,” Surf. Coat. Technol., 258, 168 – 173 (2014).CrossRefGoogle Scholar
  10. 10.
    A. Kielbus, “Microstructure and properties of sand casting magnesium alloys for elevated temperature applications,” Solid State Phenom., 176, 63 – 74 (2011).CrossRefGoogle Scholar
  11. 11.
    Z. Li, O. Wang, A. A. Luo, et al., “Fatigue strength dependence on the ultimate tensile strength and hardness in magnesium alloys,” Int. J. Fatigue, 80, 468 – 476 (2015).CrossRefGoogle Scholar
  12. 12.
    S. Dong, Y. Jiang, J. Dong, et al., “Cyclic deformation and fatigue of extruded ZK60 magnesium alloy with aging effects,” Mater. Sci. Eng. A, 615, 262 – 272 (2014).CrossRefGoogle Scholar
  13. 13.
    A. Zafari, H. M. Ghasemi, and R. Mahmudi, “Tribological behaviour of AZ91D magnesium alloy at elevated temperatures,” Wear, 292 – 293, 33 – 40 (2012).Google Scholar
  14. 14.
    Y. Maoa, Z. Li, K. Feng, et al., “Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer,” Appl. Surf. Sci., 327, 100 – 106 (2015).CrossRefGoogle Scholar
  15. 15.
    Y. S. Zou, Y. F. Wu, H. Yang, et al., “The microstructure, mechanical and friction properties of protective diamond line carbon films on magnesium alloy,” Appl. Surf. Sci., 258, 1624 – 1629 (2011).CrossRefGoogle Scholar
  16. 16.
    S. Jonas, K. Kyzioł, J. Lis, and K. Tkacz-OEmiech, “Stability of a-C:N:H layers by RF plasma enhanced CVD,” Solid State Phenom., 147 – 149, 738 – 743 (2009).Google Scholar
  17. 17.
    D. Kottfer, M. Marton, M. Ferdinandy, et al., “A study of structural and wear properties of PACVD deposited a-C:H thin films for application as protective layers on Al alloys,” Phys. Status Solidi A, 212(10), 2271 – 2277 (2015).CrossRefGoogle Scholar
  18. 18.
    K. Kyzioł, S. Kluska, M. Januoe, et al., “Chemical composition and selected mechanical properties of Al – Zn alloy modified in plasma conditions by RF CVD,” Appl. Surf. Sci., 311, 33 – 39 (2014).CrossRefGoogle Scholar
  19. 19.
    Ł. Kaczmarek, M. Stegliñski, J. Sawicki, et al., “Optimization of the heat treatment and tribological properties of 2024 and 7075 aluminum alloys,” Arch. Metall. Mater., 58(2), 535 – 540 (2013).CrossRefGoogle Scholar
  20. 20.
    G. M. Pharr and W. C. Oliver, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., 7, 613 – 617 (1992).CrossRefGoogle Scholar
  21. 21.
    L. Marcinauskas, A. Grigonis, H. Manikowski, and V. Valincius, “Deposition of amorphous hydrogenated carbon coatings by plasma jet,” Acta Phys. Pol. A, 113, 1063 – 1066 (2008).CrossRefGoogle Scholar
  22. 22.
    J. Coates, Encyclopedia of Analytical Chemistry: Interpretation of Infrared Spectra, a Practical Approach, John Wiley & Sons Ltd (2000).Google Scholar
  23. 23.
    P. J. Fallon, V. S. Veerasamy, C. A. Davis, et al., “Properties of filtered-ion-beam-deposited diamond-like carbon as a function of ion energy,” Phys. Rev. B, 48, 4777 – 4782 (1993).CrossRefGoogle Scholar
  24. 24.
    J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng., 37, 129 – 281 (2001).CrossRefGoogle Scholar
  25. 25.
    G. Socrates, Infrared and Raman Characteristic Group Frequencies, John Wiley & Sons Ltd (2004).Google Scholar
  26. 26.
    M. Hesse, H. Meier, and B. Zeeh, Spektroskopische Methoden in der Organischen Chemie, Georg Thieme Verlag (2005).Google Scholar
  27. 27.
    Spectroscopic Tools, Online software, http://www.science-andfun.de/tools/.
  28. 28.
    A. C. Ferrari, “Determination of bonding in diamond-like carbon by Raman spectroscopy,” Diam. Rel. Mat., 11, 1053 – 1061 (2002).CrossRefGoogle Scholar
  29. 29.
    A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev., 61(20), 14095 – 14107 (2000).CrossRefGoogle Scholar
  30. 30.
    H. Li, T. Xu, C. Wang, et al., J. Phys. Appl. Phys., 38, 62 – 69 (2005).CrossRefGoogle Scholar
  31. 31.
    L. Rosenberger, R. Baird, E. McCullen, et al., Surf. Interface Anal., 40, 1254 – 1261 (2008).CrossRefGoogle Scholar
  32. 32.
    W. J. Gammon, O. Kraft, A. C. Reilly, and B. C. Holloway, Carbon, 41, 1917 – 1923 (2003).CrossRefGoogle Scholar
  33. 33.
    C. Logofatu, C. C. Negrila, R. V. Ghita, et al., Crystalline Silicon – Properties and Uses, In Tech. (2001).Google Scholar
  34. 34.
    K. Nose, Y. Sasaki, M. Kamiko, and Y. Mitsuda, Jpn. J. Appl. Phys., 51, 090127 (2012).CrossRefGoogle Scholar
  35. 35.
    G. Wu, W. Dai, H. Zheng, and A. Wang, Surf. Coat. Technol., 205(7), 2067 – 2073 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ł. Kaczmarek
    • 1
  • M. Klich
    • 1
  • W. Tuta
    • 1
  • K. Kyzioł
    • 2
  • P. Kuoetrowski
    • 3
  • D. Batory
    • 1
  • W. Szymañski
    • 1
  • M. Stegliñski
    • 1
  • D. Kottfer
    • 4
  1. 1.Institute of Materials Science and EngineeringLodz University of TechnologyLodzPoland
  2. 2.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakówPoland
  3. 3.Faculty of ChemistryJagiellonian UniversityKrakówPoland
  4. 4.Faculty of Mechanical EngineeringTechnical University of KošiceKošiceSlovakia

Personalised recommendations