Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 5–6, pp 339–347 | Cite as

Transformations of Supercooled Austenite in Promising High-Hardenability Machine Steels

  • M. V. Maisuradze
  • M. A. Ryzhkov
  • O. A. Surnaeva
STRUCTURAL STEELS
  • 16 Downloads

We study special features of the transformation of supercooled austenite under the continuous cooling of Si – Mn steels with reduced contents of nickel as compared with traditionally used machine steels. The temperature ranges of the phase and structural transformations running under the conditions of heating and cooling of steels are determined by the dilatometric method. We plot the thermokinetic diagrams of transformations of supercooled austenite. The microstructural components formed in the investigated steels are analyzed both qualitatively and quantitatively. We also propose the chemical compositions of promising steels characterized by a high stability of supercooled austenite and high hardenability.

Key words

alloyed steel manganese silicon thermokinetic diagram dilatometric analysis thermal treatment microstructure hardness 

Notes

The present work was performed under the financial support according to Resolution 211 of the Government of Russian Federation, Contract No. 02.A03.21.0006, within the framework of the state task of the Ministry of Education and Science of RF, Project No. 11.1465.2014/K and under the Grant of the President of RF for young scientists (candidates of science) MK-7929.2016.8.

References

  1. 1.
    A. S. Zubchenko (ed.), Grades of Steels and Alloys [in Russian], Mashinostroenie, Moscow (2001).Google Scholar
  2. 2.
    L. E. Popova and A. A. Popov, Diagrams of the Transformation of Austenite in Steels and Beta-Solution in Titanium Alloys [in Russian], Metallurgiya, Moscow (1991).Google Scholar
  3. 3.
    ASM Handbook. Vol. 1. Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM International, Metals Park (2008).Google Scholar
  4. 4.
    F. G. Caballero, “Carbide-free bainite in steels,” in: E. Pereloma and D. V. Edmonds (eds.), Phase Transformations in Steels, Woodhead Publ., Oxford (2012), Vol. 1, pp. 436 – 467.Google Scholar
  5. 5.
    M. Soliman and H. Palkowski, “Microstructure development and mechanical properties of medium carbon carbide-free bainite steels,” Proc. Eng., 81, 1306 – 1311 (2014).CrossRefGoogle Scholar
  6. 6.
    X. Y. Long, J. Kang, B. Lv, and F. C. Zhang, “Carbide-free bainite in medium carbon steel,” Mater. Design, 64, 237 – 245 (2014).CrossRefGoogle Scholar
  7. 7.
    J. G. Speer, E. De Moor, and A. J. Clarke, “Critical assessment 7: Quenching and partitioning,” Mater. Sci. Tech., 31, 3 – 9 (2015).CrossRefGoogle Scholar
  8. 8.
    Y. Toji, G. Miyamoto, and D. Raabe, “Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation,” Acta Mater., 86, 137 – 147 (2015).CrossRefGoogle Scholar
  9. 9.
    J. Sun, H. Yu, S. Wang, et al., “Study of microstructural evolution, microstructure-mechanical properties correlation, and collaborative deformation-transformation behavior of quenching and partitioning (Q&P) steel,” Mater. Sci. Eng. A, 596, 89 – 97 (2014).CrossRefGoogle Scholar
  10. 10.
    A. Arlazarov, O. Bouaziz, J. Masse, et al., “Characterization and modeling of mechanical behavior of quenching and partitioning steels,” Mater. Sci. Eng. A, 620, 293 – 300 (2015).CrossRefGoogle Scholar
  11. 11.
    M. Jahazi and G. Ebrahimi, “The influence of flow-forming parameters and microstructure on the quality of a D6ac steel,” J. Mater. Proc. Tech., 103(3), 362 – 366 (2000).CrossRefGoogle Scholar
  12. 12.
    J. Pritchard and S. Rush, Vacuum hardening high strength steels: oil versus gas quenching, Heat Treating Progr., Nos. 5 – 6, 19 – 23 (2007).Google Scholar
  13. 13.
    J. Chiang, J. D. Boyd, and A. K. Pilkey, “Effect of microstructure on retained austenite stability and tensile behavior in an aluminum-alloyed TRIP steel,” Mater. Sci. Eng. A, 638, 132 – 142 (2015).CrossRefGoogle Scholar
  14. 14.
    P. Zhao, B. Zhang, C. Cheng, et al., “The significance of ultrafine film-like retained austenite in governing very high cycle fatigue behavior in an ultrahigh-strength Mn – Si – Cr – C steel,” Mater. Sci. Eng., 645, 116 – 121 (2015).CrossRefGoogle Scholar
  15. 15.
    A. Varshney, S. Sangal, S. Kundu, et al., “Super strong and highly ductile low alloy multiphase steels consisting of bainite, ferrite, and retained austenite,” Mater. Design, 95, 75 – 88 (2016).CrossRefGoogle Scholar
  16. 16.
    È. A. Gudremon, Special Steels [in Russian], Metallurgiya, Moscow (1966), Vol. 1.Google Scholar
  17. 17.
    È. A. Gudremon, Special Steels [in Russian], Metallurgiya, Moscow (1966), Vol. 2.Google Scholar
  18. 18.
    Yu. V. Yudin, M. A. Gervas’ev, and T. A. Kansafarova, “Influence of chromium and nickel on the stability of supercooled austenite in chromium-nickel-molybdenum steels,” Fiz. Met. Metalloved., 87(4), 99 – 102 (1999).Google Scholar
  19. 19.
    V. A. Malyshevskii, T. G. Semicheva, and E. I. Khlusova, “Influence of alloying elements and structure on the properties of low-carbon improvable steels,” Metalloved. Term. Obrab. Met., No. 9, 5 – 9 (2001).Google Scholar
  20. 20.
    S. Goto, C. Kami, and S. Kawamura, “Effect of alloying elements and hot-rolling conditions on microstructure of bainitic-ferrite_martensite dual phase steel with high toughness,” Mater. Sci. Eng. A, 648, 436 – 442 (2015).CrossRefGoogle Scholar
  21. 21.
    E. M. Grinberg, G. G. Laricheva, and E. S. Miroshnik, “Influence of boron on the transformations of steel in the course of tempering,” Metalloved. Term. Obrab. Met., No. 9, 4 – 6 (1991).Google Scholar
  22. 22.
    D. Li, Y. Feng, S. Song, et al., “Influences of Nb-microalloying on microstructure and mechanical properties of Fe – 25Mn – 3Si – 3Al TWIP steel,” Mater. Design, 84, 238 – 244 (2015).CrossRefGoogle Scholar
  23. 23.
    S. Sadeghpour, A. Kermanpur, and A. Najafizadeh, “Influence of Ti microalloying on the formation of nanocrystalline structure in the 201L austenitic stainless steel during martensite thermomechanical treatment,” Mater. Sci. Eng. A, 584, 177 – 183 (2013).CrossRefGoogle Scholar
  24. 24.
    M. A. Ryzhkov and A. A. Popov, “Methodological aspects of plotting of thermokinetic diagrams of transformation of supercooled austenite in low-alloy steels,” Metal Sci. Heat Treat., 52, 612 – 616 (2011).Google Scholar
  25. 25.
    T. A. Kop, J. Sietsma, and S. Van Der Zwaag, “Dilatometric analysis of phase transformations in hypo-eutectoid steels,” J. Mater. Sci., 36, 519 – 526 (2001).CrossRefGoogle Scholar
  26. 26.
    M. V. Maisuradze, Yu. V. Yudin, and M. A. Ryzhkov, “Numerical simulation of pearlitic transformation in steel 45Kh5MF,” Metal Sci. Heat Treat., 56, 512 – 516 (2015).CrossRefGoogle Scholar
  27. 27.
    L. Huiping, Z. Guoqun, and N. Shanting, “FEM simulation of quenching process and experimental verification of simulation results,” Mater. Sci. Eng. A, 452 – 453, 705 – 714 (2007).CrossRefGoogle Scholar
  28. 28.
    J. C. Ion, K. E. Easterling, and M. F. Ashby, “Asecond report on diagrams of microstructure and hardness for heat-affected zones in welds,” Acta Metall., 32, 1949 – 1962 (1984).CrossRefGoogle Scholar
  29. 29.
    V. D. Sadovskii, Structural Heredity of Steels [in Russian], Metallurgiya, Moscow (1973).Google Scholar
  30. 30.
    M. A. Ryzhkov,M. V. Maisuradze, Yu. V. Yudin, et al., “Experience in improving silicon steel component heat treatment quality,” Metallurgist, 59, 401 – 405 (2015).CrossRefGoogle Scholar
  31. 31.
    M. A. Smirnov, V. M. Schastlivtsev, L. G. Zhuravlev, Fundamentals of Thermal Treatment of Steels [in Russian], UrD RAS, Ekaterinburg (1999).Google Scholar
  32. 32.
    Y. Li, Y. Lu, C. Wang, et al., “Phase stability of residual austenite in 60Si2Mn steels treated by quenching and partitioning,” J. Iron Steel Res. Int., 18, 70 – 74 (2011).CrossRefGoogle Scholar
  33. 33.
    M. J. Santofimia, L. Zhao, R. Petrov, et al., “Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon steel,” Mater. Charact., 59, 1758 – 1764 (2008).CrossRefGoogle Scholar
  34. 34.
    D. P. Koistinen and R. E. Marburger, “A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels,” Acta Metallurg., 7(1), 59 – 60 (1959).CrossRefGoogle Scholar
  35. 35.
    T. Domañski, W. Piekarska, and M. Kubiak, “Determination of the final microstructure during processing carbon steel hardening,” Proc. Eng., 136, 77 – 81 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. V. Maisuradze
    • 1
  • M. A. Ryzhkov
    • 1
  • O. A. Surnaeva
    • 1
  1. 1.B. N. El’tsin Ural Federal UniversityEkaterinburgRussia

Personalised recommendations