Metal Science and Heat Treatment

, Volume 60, Issue 5–6, pp 290–296 | Cite as

Effect of Vacuum Ion-Plasma Treatment on Surface Layer Structure, Corrosion and Erosion Resistance of Titanium Alloy with Intermetallic a2-Phase

  • A. M. MamonovEmail author
  • S. M. Sarychev
  • S. S. Slezov
  • Yu. V. Chernyshova

Results are provided for a study of the effect of vacuum ion-plasma nitriding on the phase composition, structure, microhardness, salt corrosion resistance, and erosion resistance of alloy Ti – 14Al – 3Nb – 3V – 0.5Zr with an original bimodal structure and different surface microgeometry. It is shown that with an increase in nitriding temperature from 550 to 650°C the content of Ti2N nitrides in the surface layer increases and Ti3AlN nitride in formed, which raises the microhardness but reduces the thickness of the hardened diffusion zone; pores appear in the surface at 650°C. Vacuum ion-plasma nitriding is shown to raise substantially the resistance of specimens of alloy Ti – 14Al – 3Nb – 3V – 0.5Zr with a polished surface to salt corrosion. Additional nitriding after deposition of a TiN coating improves ground specimens salt corrosion resistance. Vacuum ion-plasma nitriding with additional deposition of a TiN coating increases the resistance of specimens with polished and ground surfaces to erosive action.

Key words

titanium aluminide vacuum ion-plasma nitriding corrosion microhardness structure phase composition 


  1. 1.
    E. N. Kablov, “Strategic directions for developing materials and technology of their processing in the period up to 2030,” Aviats. Mater. Tekhnol., No. S, 7 – 17 (2012).Google Scholar
  2. 2.
    N. A. Nochovnaya and V. I. Ivanov, “Intermetallics based on titanium. Analysis of the state of the question,” Titan, No. 1, 7 – 14 (2007).Google Scholar
  3. 3.
    A. A. Il’in, V. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, and Properties: Handbook [in Russian], VILS – MATI, Moscow (2009).Google Scholar
  4. 4.
    A. A. Ilyin, A. M. Mamonov, Y. N. Kusakina, and V. K. Nosov, “Hydrogen influence on the structure of high-temperature strength titanium alloy with intermetallic hardening,” in: EUROMAT-97. Maastricht-NL. April 1997. Proc. 5th European Conference on Advanced Materials, Processes and Applications (1997), pp. 307 – 310.Google Scholar
  5. 5.
    Wang Bin, Tiancong Jia, and Dunxue Zou, “A study on longterm stability of Ti3Al – Nb – V –Mo alloy,” Mater. Sci. Eng. A, 153(1), 422 – 426 (1992).Google Scholar
  6. 6.
    L. S. Apgar, C. I. Yolton, and M. Sagib, “Microstructure and property modification of cast alpha-2 titanium alloys by thermochemical processing with hydrogen,” in: Titanium–92 Science and Technology: Processing 7th World Titanium Conference (San-Diego, California June 29 – July 2, 1992), Minerals, Metals and Materials Society, Warrendale, Pa. (1993), Vol. 2, pp. 1331 – 1335.Google Scholar
  7. 7.
    G. Lutjering, G. Proske, and G. Terlinde, “Influence of microstructure, texture and environment on tensile properties of super alpha-2,” in: Titanium–95 Science and Technology: Proceedings of the Eighth World Conference on Titanium (Birmingham, UK 22 – 26 October 1995), Institute of Materials (1996), Vol. 1, pp. 332 – 339.Google Scholar
  8. 8.
    M. Niinomi, “Titanium alloys for biomedical, dental and healthcare applications,” in: Ti–2007 Science and Technology: Proceedings of the 11th World Conference on Titanium (Kyoto, Japan, 3 – 7 June 2007), The Japan Institute of Metals (2007), Vol. 2, pp. 1417 – 1425.Google Scholar
  9. 9.
    M. Tahara, H. Y. Kim, T. Inamura, et al., “Effect of addition on mechanical properties of Ti – 20Nb – 4Zr – 2Ta (at%) biomedical superelastic alloy,” in: Ti–2007 Science and Technology: Proceedings of the 11th World Conference on Titanium (Kyoto, Japan, 3 – 7 June 2007), The Japan Institute of Metals (2007), Vol. 2, pp. 1453 – 1454.Google Scholar
  10. 10.
    Ding Dongyan, Liu Hegang, Ning Congqin, and Li Zhaohui, “Development of biomedical Ti – Cr alloys with changeable young’s modulus via deformation-induced transformation,” in: Ti–2011: Proceedings of the 12th World Conference on Titanium (Beijing, China, 19 – 24 June 2011), The Japan Institute of Metals (2011), Vol. 3, pp. 2046 – 2050.Google Scholar
  11. 11.
    E. V. Collins, Physical Metallurgy of Titanium Alloys [Russian translation], Metallurgiya, Moscow (1298).Google Scholar
  12. 12.
    A. A. Il’in, A. M. Mamonov, V. N. Karpov, et al., “Comprehensive technology for creating wear resistant highly loaded components of endoprostheses of large joints of titanium alloys,” Tekhnol. Mashinotr., No. 9, 43 – 47 (2007).Google Scholar
  13. 13.
    A. A. Il’in, V. A. Kolachev, V. K. Nosov, and A. M. Mamonov, Hydrogen Technology of Titanium Alloys [in Russian], MISiS, Moscow (2002).Google Scholar
  14. 14.
    V. K. Nosov and B. A. Kolachev, Hydrogen Plastification During Hot Deformation of Titanium Alloys [in Russian], Metallurgiya, Moscow (1986).Google Scholar
  15. 15.
    A. A. Ilyin, V. K. Nosov, and S. V. Scvortsova, “Hydrogen technology of semiproducts and finished goods production from high-strength titanium alloys,” in: Advances in the Science and Technology of Titanium Alloy Processing, TMS, Anaheim, California (1997), pp. 517 – 523.Google Scholar
  16. 16.
    A. M. Mamonov, S. V. Skvortsova, E. O. Agarkova, and O. Z. Umarova, “Physicochemical and technological bases of forming thermally stable structures of bimodal type in heat-resistant titanium alloys and alloys based on titanium aluminide with reverse alloying by hydrogen,” Titan, No. 3, 9 – 15 (2013).Google Scholar
  17. 17.
    A. A. Il’in, S. Ya. Betsofen, S. V. Skvortsova, et al., “Structural aspects of ion nitriding of titanium alloys,” Metally, No. 3, 6 – 15 (2002).Google Scholar
  18. 18.
    A. A. Il’in, S. V. Skvorstova, E. A. Lukina, et al., “Low-temperature ion nitriding of implants of titanium alloy VT20 in different structural states,” Metally, No. 2, 38 – 44 (2005).Google Scholar
  19. 19.
    A. M. Mamonov, V. S. Spektor, E. A. Lukina, and S. M. Sarychev, “Use of vacuum ion plasma nitriding for improving medical implant wear resistance,” Titan, No. 2, 45 – 50 (2010).Google Scholar
  20. 20.
    A. A. Il’in, V. K. Nosov, A. M. Mamonov, and V. N. Uvarov, “RF Patent 2081929, C1 MPK6 C 22 C 14/00, Alloy based on titanium aluminide, Claimant and patent holder Moscow Aviation Technological University im K. É. Tsiolkovsky, No. 95114327/02,” Byull. Izobr. Polezn. Modeli, No. 17 (1997), claim 08.10.95, publ. 06.20.97.Google Scholar
  21. 21.
    GOST 9.912–89. ESZKS. Corrosion-Resistant Steels and Alloys. Accelerated Test Method for Pitting Corrosion Resistance [in Russian].Google Scholar
  22. 22.
    ASTM G5–94. Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements [in Russian].Google Scholar
  23. 23.
    A. A. Il’in, S. V. Svkortsova, V. S. Spektor, et al., “Low-temperature vacuum ion plasma nitriding of titanium alloys of different classes,” Tekhnol. Legk. Splavov, No. 3, 103 – 110 (2008).Google Scholar
  24. 24.
    S. P. Belov, A. A. Il’in, A. M. Mamonov, and A. V. Aleksandrova, “Theoretical analysis of ordering processes in alloys based on Ti3Al. 1. Mechanism of ordering in alloys based on compound Ti3Al,” Metally, No. 1, 134 – 138 (1994).Google Scholar
  25. 25.
    E. Etchessahar, I. P. Bars, and J. Debuigne, “Titanium nitrogen phase diagram and diffusion phenomenal,” in: Proc. 5th Int. Conf. on Titanium, Titanium Science and Technology, Munich (1984), Vol. 3, pp. 1423 – 1440.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. M. Mamonov
    • 1
    Email author
  • S. M. Sarychev
    • 2
  • S. S. Slezov
    • 1
  • Yu. V. Chernyshova
    • 1
  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia
  2. 2.Implant MT, JSCMoscowRussia

Personalised recommendations