Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 3–4, pp 135–141 | Cite as

Abnormal Grain Growth: Effect of Disperse Particles

  • V. Yu. Novikov
STRUCTURE
  • 106 Downloads

Problems arising due to abnormal grain growth, the main of which concerns determination of the start and end of this process in materials with various initial microstructures and the behavior of disperse particles, are considered. Grain growth is studied by the method of numerical simulation. A pioneer diagram presenting the conditions of development and suppression of abnormal grain growth at a fixed rate of dissolution of particles is plotted in the “initial grain size – initial retarding force” coordinates. The causes of abnormal grain growth in nanocrystalline materials are analyzed, of which the principal one is supposed to be the presence of submicroscopic pores. The results obtained are used to develop novel methods for controlling the grain structure in various structural and functional materials.

Key words

abnormal grain growth disperse particles Zener retarding force nanocrystalline materials numerical simulation 

Notes

The author is obliged to Professors V. Ya. Goldstein and L. S. Shvindlerman for the stimulating discussions.

References

  1. 1.
    P. A. Beck, L. C. Kremer, L. J. Demer, and M. L. Holzworth, “Grain growth in high-purity aluminum and in an Al – Mn alloy,” Trans. AIME, 175, 372 – 395 (1948).Google Scholar
  2. 2.
    J. Maity and D. K. Mondai, “Isothermal grain growth of austenite in hypoeutectoid and hypereutectoid plain carbon steels,” J. Iron Steel Res. Int., 17, 38 – 43 (2010).CrossRefGoogle Scholar
  3. 3.
    M. Shirdel, H. Mirzadeh, and M. H. Parsa, “Abnormal grain growth in AISI 304L stainless steel,” Mater. Charact., 97, 11 – 17 (2014).CrossRefGoogle Scholar
  4. 4.
    D.-G. Lee, C. Li, Y. Lee, et al., “Effect of temperature on grain growth kinetics of high strength Ti – 2Al – 9.2Mo – 2Fe alloy,” Thermochim. Acta, 586, 66 – 71 (2014).CrossRefGoogle Scholar
  5. 5.
    M. Hillert, “On the theory of normal and abnormal grain growth,” Acta Metall., 13, 227 – 238 (1965).CrossRefGoogle Scholar
  6. 6.
    T. Gladman, “On the theory of the effect of precipitate particles on grain growth in metals,” Proc. Roy. Soc. A, 294, 298 – 309 (1966).CrossRefGoogle Scholar
  7. 7.
    V. Yu. Novikov, Secondary Recrystallization [in Russian], Metallurgiya, Moscow (1990), 128 p.Google Scholar
  8. 8.
    S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys [in Russian], MISiS, Moscow (2005), 432 p.Google Scholar
  9. 9.
    D. Raabe, “Recovery and recrystallization: phenomena, physics, models, simulation,” in: D. E. Laughlin and K. Hono (eds.), Physical Metallurgy, Elsevier (2014), pp. 2291 – 2397.Google Scholar
  10. 10.
    R. J. Brook, “Pore-grain interactions and grain growth,” J. Am. Ceram. Soc., 52, 56 – 57 (1969).CrossRefGoogle Scholar
  11. 11.
    M. A. Razzak, M. Perez, T. Sourmail, et al., “Preventing abnormal grain growth of austenite in low alloy steels,” ISIJ Int., 54, 1927 – 1934 (2014).CrossRefGoogle Scholar
  12. 12.
    J. Fernandez, S. Illescas, and J. L. Guilemany, “Effect of microalloying elements on the austenitic grain growth in a low carbon HSLA steel,” Mater. Lett., 61, 2389 – 2392 (2007).CrossRefGoogle Scholar
  13. 13.
    M. Mujahid and J.W. Martin, “Development of microstructures of high grain aspect ratio during zone annealing of oxide dispersion strengthened superalloys,” Mater. Sci. Technol., 10, 703 – 710 (1994).CrossRefGoogle Scholar
  14. 14.
    Y. Ushigami, “Theoretical analysis and computer simulation of secondary recrystallization in grain-oriented silicon steel,” in: Nippon Steel Techn. Rep. (2013), 102 p.Google Scholar
  15. 15.
  16. 16.
    V. Yu. Novikov, “Computer simulation of normal grain growth,” Acta Metall., 26, 1739 – 1744 (1978).CrossRefGoogle Scholar
  17. 17.
    V. Yu. Novikov, “Grain growth controlled by mobile particles on grain boundaries,” Scr. Mater., 55, 243 – 246 (2006).CrossRefGoogle Scholar
  18. 18.
    V. Yu. Novikov, “Texture development during grain growth in polycrystals with strong preferred orientation,” Acta Mater., 47, 1935 – 1943 (1999).CrossRefGoogle Scholar
  19. 19.
    C. Zener, “Introduction to grains, phases, and interfaces — an interpretation of microstructure,” Trans. AIME, 175, 15 – 51 (1948) (first mentioned in the paper of C. S. Smith).Google Scholar
  20. 20.
    J. W. Christian, Theory of Transformations in Metals and Alloys, Part 1, Pergamon, Oxford (2002), 1200 p.Google Scholar
  21. 21.
    G. Gottstein and L. S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, CRC Press, Boca Raton (2010), 684 p.Google Scholar
  22. 22.
    V. Yu. Novikov, “Diagram of grain growth models,” Mater. Lett., 18, 436 – 439 (2016).CrossRefGoogle Scholar
  23. 23.
    Q. Sha and Z. Sun, “Grain growth behavior of coarse-grained austenite in a Nb – V – Ti microalloyed steel,” Mater. Sci. Eng. A, 523, 77 – 84 (2009).CrossRefGoogle Scholar
  24. 24.
    P. G. Shewmon, “The movement of small inclusions in solids by a temperature gradient,” Trans. AIME, 230, 1134 – 1137 (1964).Google Scholar
  25. 25.
    M. F. Ashby, in: N. Hansen, A. R. Jones, and T. Leffers (eds.), Recrystallization and Grain Growth in Multi-phase and Particle-containing Materials, Riso, Roskilde, Denmark (1980), pp. 325 – 336.Google Scholar
  26. 26.
    G. Gottstein and L. S. Shvindlerman, “Theory of grain boundary motion in the presence of mobile particles,” Acta Metall., 41, 3267 – 3275 (1993).CrossRefGoogle Scholar
  27. 27.
    L. Onsager, “Reciprocal relations in irreversible processes,” Phys. Rev., 37, 405 – 426 (1931).CrossRefGoogle Scholar
  28. 28.
    V. Yu. Novikov, “Grain growth jointly affected by immobile and mobile particles,” Mater. Lett., 178, 276 – 279 (2016).CrossRefGoogle Scholar
  29. 29.
    U. Klement, U. Erb, El-Sherik, and K. T. Aust, “Thermal stability of nanocrystalline Ni,” Mater. Sci. Eng. A., 203, 177 – 186 (1995).CrossRefGoogle Scholar
  30. 30.
    V. Yu. Novikov, “Grain growth suppression in nanocrystalline materials,” Mater. Lett., 100, 271 – 273 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. Yu. Novikov
    • 1
  1. 1.HamburgGermany

Personalised recommendations