Development of Ballistic Protection Based on Precipitation-Hardened Composite Material
Article
First Online:
- 7 Downloads
The possibility of application of an aluminum-based precipitation-hardened composite material for purposes of ballistic protection is considered. Experimental data on A6 aluminum-based alloy reinforced with alumina particles are presented.
Key words
aluminum ballistic protection precipitation-hardened material aluminaReferences
- 1.I. F. Kobylkin and V. V. Selivanov, Materials and Structures of Light Armored Protection [in Russian], Izd. MGTU Im. N. É. Baumana, Moscow (2014), 191 p.Google Scholar
- 2.V. A. Grigoryan, I. F. Kobylkin, V. M. Marinin, and E. N. Chistyakov, Materials and Protective Structures for Local and Individual Armoring [in Russian], Izd. Radio-Soft, Moscow (2008), 406 p.Google Scholar
- 3.Mehdi Saeidi, Mohsen Barmouz, Mohammad Kazem Besharati Givic, “Investigation on AA5083/AA7075 + Al2O3 joint fabricated by friction stir welding: Characterizing microstructure,” Corr. Toughn. Behav. Mater. Res., No. 18(6), 1156 – 1162 (2015) (DOI: https://doi.org/10.1590/1516-1439.357714).
- 4.P. Vijaya Kumar, G. Madhusudhan Reddy, and K. Srinivasa Rao, “Microstructure and pitting corrosion of armor grade AA7075 aluminum alloy friction stir weld nugget zone. Effect of post weld heat treatment and addition of boron carbide,” Defence Technol., No. 11, 166 – 173 (2015) (DOI: https://doi.org/10.1016/j.dt.2015.01.002).
- 5.E. N. Kablov, “Strategic directions of development of materials and technologies of their processing for up to 2030,” in: Aviats. Mater. Tekhnol. [in Russian], VIAM, Moscow (2012), pp. 7 – 17.Google Scholar
- 6.Yu. A. Kurganova, “Prospects of development of metal-matrix composite materials for industrial purposes,” Servis v Rossii i za Rubezhom, No. 3(30), 235 – 240 (2012).Google Scholar
- 7.E. A. Chernyshov, E. A. Romanova, and A. D. Romanov, “Development of fuel element on the base of highly metallized gas-free fuel,” Vest. MGTU Im. N. E. Baumana, Mashinostr., No. 6(105), 74 – 81 (2015).Google Scholar
- 8.E. A. Chernyshov, A. D. Romanov, and E. A. Romanova, “Development of ballistic protection materials based on aluminum alloys,” Zagot. Proizvod. Mashinostr., No. 10, 43 – 47 (2015).Google Scholar
- 9.Yunus Eren Kalay, Low Velocity Impact Characterization of Monolithic and Laminated AA2024 Plates by Drop Weight Test (2003), 149 p. (URL: https://etd.lib.metu.edu.tr/upload/1096726/index.pdf).
- 10.A. B. Karpov, “Fracture of heat-hardened steel cores of armorpiercing projectiles on different-type obstacles,” Vopr. Oboron. Tekhn. Ser. 16: Tekhn. Sred. Protivod. Terror., Nos. 5 – 6, 19 – 24 (2012).Google Scholar
- 11.E. A. Chernyshov, S. Z. Lonchakov, A. D. Romanov, et al., “A study of the microstructure of an aluminum-matrix precipitation-filled cast composite material obtained by the method of internal oxidation,” Perspekt. Mater., No. 9, 78 – 83 (2016).Google Scholar
- 12.Wojciech Jurczak, “Impact and ballistic resistance of a new aluminum alloy for ship construction elements,” Polish Maritime Res., 22[1(85)], 72 – 78 (2015) (DOI: 10.1515/pomr-2015-0010).Google Scholar
- 13.B. Li, A. Kidane, G. Ravichandran, and M. Ortiz, “Verification and validation of the optimal transportation meshfree (OTM) simulation of terminal ballistics,” Int. J. Impact Eng. (DOI: https://doi.org/10.1016/j.ijimpeng.2011.11.003).
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2018