Advertisement

Harnack Inequalities for Simple Heat Equations on Riemannian Manifolds

  • Li MaEmail author
  • Yang Liu
Article
  • 41 Downloads

Abstract

In this paper, we consider Harnack inequalities (the gradient estimates) of positive solutions for two different heat equations via the use of the maximum principle. In the first part, we obtain the gradient estimate for positive solutions to the following nonlinear heat equation problem
$$\partial _{t}u={\Delta } u+au\log u+Vu,~~u>0$$
on the compact Riemannian manifold (M, g) of dimension n and with Ric(M) ≥−K. Here a > 0 and K are some constants and V is a given smooth positive function on M. Similar results are showed to be true in case when the manifold (M, g) has compact convex boundary or (M, g) is a complete non-compact Riemannian manifold. In the second part, we study Harnack inequality (gradient estimate) for positive solution to the following linear heat equation on a compact Riemannian manifold with non-negative Ricci curvature:
$$ \partial _{t}u={\Delta } u+\sum W_{i}u_{i}+Vu, $$
where Wi and V only depend on the space variable xM. The novelties of our paper are the refined global gradient estimates for the corresponding evolution equations, which are not previously considered by other authors such as Yau (Math. Res. Lett. 2(4), 387–399, 1995), Ma (J. Funct. Anal. 241(1), 374–382, 2006), Cao et al. (J. Funct. Anal. 265, 2312–2330, 2013), Qian (Nonlinear Anal. 73, 1538–1542, 2010).

Keywords

Positive solution Nonlinear heat equation Gradient estimate Harnack inequality 

Mathematics Subject Classification (2010)

53C44 53C21 35K05 

Notes

Acknowledgements

The authors would like to thank the unknown referees for a helpful suggestion.

References

  1. 1.
    Aubin, T.: Nonlinear Analysis on Manifolds. Springer, New York (1982)zbMATHGoogle Scholar
  2. 2.
    Bailesteanu, M., Cao, X., Pulemotov, A.: Gradient estimates for the heat equation under the Ricci flow. J. Funct. Anal. 258, 3517–3542 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chow, B., Hamilton, R.S.: Constrained and linear Harnack inequalities for parabolic equations. Invent. Math. 129(2), 213–238 (1997)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Cao, X., Hamilton, R.S.: Differential Harnack estimates for time dependent heat equations with potentials. Geom. Funct. Anal. 19(4), 989–1000 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cao, X., Fayyazuddin Ljungbergb, B., Liu, B.: Differential Harnack estimates for a nonlinear heat equation. J. Funct. Anal. 265, 2312–2330 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cao, X., Zhang, Q.S.: The conjugate heat equation and ancient solutions of the Ricci flow. Adv. Math. 228(5), 2891–2919 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cao, H.-D., Ni, L.: Matrix Li-Yau-Hamilton estimates for the heat equation on Kähler manifolds. Math. Ann. 331(4), 795–807 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, L., Chen, W.: Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds. Ann. Global Anal. Geom. 35, 397–404 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hamilton, R.S.: A matrix Harnack estimate for the heat equation. Comm. Anal. Geom. 1(1), 113–126 (1993)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hamilton, R.S.: The Information of Singularities in the Ricci Flow. Survey in Differential Geometry, vol. 2, pp. 7–136. International Press, Boston (1995)Google Scholar
  11. 11.
    Huang, G., Ma, B.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Arch. Math. (Basel) 94, 265–275 (2010)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Huang, G., Huang, Z., Li, H.: Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds. Ann. Global Anal. Geom. 43(3), 209–232 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kuang, S., Zhang, Q.S.: A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow. J. Funct. Anal. 255(4), 1008–1023 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ni, L.: The entropy formula for linear heat equation. J. Geom. Anal. 14, 369–374 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, P., Yau, S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, J.: Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds. J. Funct. Anal. 100, 233–256 (1991)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ma, L.: Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds. J. Funct. Anal. 241(1), 374–382 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ma, L.: Gradient estimates for a simple nonlinear heat equation on manifolds. Appl. Anal. 96, 225–230 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ma, L.: Harnack’s inequality and Green’s functions on locally finite graphs. Nonlinear Anal. 170, 226–237 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ma, L., Zhao, L., Song, X.: Gradient estimate for the degenerate parabolic equation u t = ΔF(u) + H(u) on manifolds. J. Differ. Equ. 244, 1157–1177 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159v1 (2002)
  22. 22.
    Qian, B.: A uniform bound for the solutions to a simple nonlinear equation on Riemannian manifolds. Nonlinear Anal. 73, 1538–1542 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Souplet, P., Zhang, Q.: Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds. Bull. Lond. Math. Soc. 38(6), 1045–1053 (2006)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Wu, J.: Elliptic gradient estimates for a ninlinear harat equation and application. Nonlinear Anal. 151, 1–17 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Xu, X.: Gradient estimates for on manifolds and some Liouville-type theorems. J. Differ. Equ. 252(2), 1403–1420 (2012)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Yau, S.-T.: On the Harnack inequalities of partial differential equations. Comm. Anal. Geom. 2(3), 431–450 (1994)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yau, S.-T.: Harnack inequality for non-self-adjoint evolution equations. Math. Res. Lett. 2(4), 387–399 (1995)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yau, S.-T.: Harmonic function on complete Riemannian manifolds. Comm. Pure Appl. Math. 28, 201–228 (1975)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Yang, Y.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Proc. Am. Math. Soc. 136, 4095–4102 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhu, X., Li, Y.: Li-Yau estimates for a nonlinear parabolic equation on manifolds. Math. Phys. Anal. Geom. 17, 273–288 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.College of Mathematics and Information ScienceHenan Normal UniversityXinxiangPeople’s Republic of China

Personalised recommendations