Advertisement

Regularity Criteria for the 3D Dissipative System Modeling Electro-Hydrodynamics in Besov Spaces

Article
  • 29 Downloads

Abstract

In this paper, we consider the cauchy problem of the Navier-Stokes-Nernst-Planck-Poisson system. We obtain some regularity criteria for the Navier-Stokes-Nernst-Planck-Poisson system in the homogeneous Besov space.

Keywords

Electro-hydrodynamics Regularity criteria Besov spaces 

Mathematics Subject Classification (2010)

35Q35 35B45 35B65 

Notes

Acknowledgments

The authors warmly thank the anonymous referee for his/her careful reading of the manuscript and some pertinent remarks that lead to various improvements to this paper.

References

  1. 1.
    Bazant, M., Thornton, K.: Diffuse-charge dynamics in electrochemical systems, vol. 70 (2004)Google Scholar
  2. 2.
    Bahouri, H., Chemin, J., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Springer Science & Business Media, Berlin (2011)CrossRefGoogle Scholar
  3. 3.
    Cao, C., Wu, J.: Two regularity criteria for the 3D MHD equations. J. Differ. Equ. 9, 2263–2274 (2010)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Deng, C., Zhao, J., Cui, S.: Well-posedness of a dissipative nonlinear electrohydrodynamic system in modulation spaces. Nonlinear. Anal. 73, 2088–2100 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Jerome, J.: Analytical approaches to charge transport in a moving medium. Transport. Theor. Stat. 31, 333–366 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lin, F.: Some analytical issues for elastic complex fluids. Comm. Pure Appl. Math. 65, 893–919 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Newman, J., Thomas-Alyea, K.: Electrochemical systems. Wiley, New York (2012)Google Scholar
  8. 8.
    Rubinstein, I.: Electro-diffusion of Ions. SIAM, Philadelphia (1990)CrossRefGoogle Scholar
  9. 9.
    Ryham, R., Liu, C., Zikatanov, L.: Mathematical models for the deformation of electrolyte droplets. Discrete Contin. Dyn. Syst. 8, 649–661 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Schmuck, M.: Analysis of the Navier–Stokes–Nernst–Planck–Poisson system. Math. Model. Methods Appl. Sci. 19, 993–1014 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Alghamdi, A., Gala, S., Ragusa, M.: On the Blow-up criterion for incompressible stokes-MHD equations. Results. Math. 73, 110 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gala, S., Ragusa, M.A., Sawano, Y., Tanaka, H.: Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz-Morrey spaces. Appl. Anal. 93, 356–368 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gala, S., Guo, Z., Ragusa, M.A.: A remark on the regularity criterion of Boussinesq equations with zero heat conductivity. Appl. Math. Lett. 27, 70–73 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhao, J., Deng, C., Cui, S.: Well-posedness for the Navier–Stokes–Nernst–Planck–Poisson system in Triebel–Lizorkin space and Besov space with negative indices. J. Math. Anal. Appl. 377, 392–405 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhao, J., Deng, C., Cui, S.: Global well-posedness of a dissipative system arising in electrohydrodynamics in negative-order Besov spaces. J. Math. Phys. 51, 093101 (2010)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Zhao, J., Deng, C., Cui, S.: Well-posedness of a dissipative system modeling electrohydrodynamics in Lebesgue spaces. Differ. Equ. Appl. 3, 427–448 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Zhao, J., Bai, M.: Blow-up criteria for the three dimensional nonlinear dissipative system modeling electro-hydrodynamics. Nonlinear. Anal. 31, 210–226 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zhao, J.: Logarithmical regularity criteria in terms of pressure for the three dimensional nonlinear dissipative system modeling electro-diffusion. arXiv:1608.02194 (2016)
  19. 19.
    Zhao, J.: Regularity criteria for the 3D dissipative system modeling Electro-Hydrodynamics. Bull. Malays. Math. Sci. Soc. 3, 1–17 (2017)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Mathematics and Computer ScienceHunan Normal UniversityChangshaChina

Personalised recommendations