Advertisement

Localization for the Ising Model in a Transverse Field with Generic Aperiodic Disorder

  • Rajinder MaviEmail author
Article

Abstract

We show that the transverse field Ising model undergoes a zero temperature phase transition for a Gδ set of ergodic transverse fields. We apply our results to the special case of quasiperiodic transverse fields, in one dimension we find a sharp condition for the existence of a phase transition.

Keywords

Ground state Transverse field Ising model Quasiperiodic Dense G delta 

Notes

References

  1. 1.
    Aizenman, M., Klein, A., Newman, C.: Percolation methods for disordered quantum ising models. In: Kotecky, R. (ed.) Phase Transitions: Mathematics, Physics, Biology. World Scientific (1993)Google Scholar
  2. 2.
    Bezuidenhout, C., Grimmett, G.: Exponential decay for subcritical contact and percolation processes. Ann. Probab. 19(3), 984–1009 (1991)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1999)CrossRefGoogle Scholar
  4. 4.
    Björnberg, J.: Graphical representations of Ising and Potts models. PhD thesis, KTH Matematik (2009)Google Scholar
  5. 5.
    Björnberg, J., Grimmett, G.: The phase transition of the quantum Ising model is sharp. J. Stat. Phys. 136(2), 231–273 (2009)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Campanino, M., Klein, A.: Decay of two-point functions for (d + 1)-dimensional percolation, Ising and Potts models with d-dimensional disorder. Commun. Math. Phys. 135(3), 438–497 (1991)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Campanino, M., Klein, A., Fernando Perez, J.: Localization in the ground state of the ising model with a random transverse field. Commun. Math. Phys. 135(3), 499–515 (1991)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Chapman, J., Stolz, G.: Localization for random block operators related to the XY spin chain. In: Annales Henri Poincaré, vol. 16, pp. 405–435. Springer (2015)Google Scholar
  9. 9.
    Cornfeld, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic Theory. Springer, Berlin (1982)CrossRefGoogle Scholar
  10. 10.
    Crawford, N., Ioffe, D.: Random current representation for transverse field Ising model. Commun. Math. Phys. 296(2), 447–474 (2010)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Ethier, S., Kurtz, T.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)CrossRefGoogle Scholar
  12. 12.
    Grimmett, G.: Probability on Graphs: Random Processes on Graphs and Lattices, vol. 1. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  13. 13.
    Grimmett, G.: The Random-Cluster Model. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2010)Google Scholar
  14. 14.
    Grimmett, G.R., Osborne, T.J., Scudo, P.F: Entanglement in the quantum Ising model. J. Stat. Phys. 131(2), 305–339 (2008)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Ioffe, D.: Stochastic geometry of classical and quantum Ising models. In: Methods of Contemporary Mathematical Statistical Physics, pp. 1–41. Springer (2009)Google Scholar
  16. 16.
    Jitomirskaya, S., Klein, A.: Ising model in a quasiperiodic transverse field, percolation, and contact processes in quasiperiodic environments. J. Stat. Phys. 73(1), 319–344 (1993)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Khinchin, A.Ya., Eagle, H.: Continued Fractions. Dover books on mathematics. Dover Publications, New York (1964)Google Scholar
  18. 18.
    Klein, A.: Extinction of contact and percolation processes in a random environment. Ann. Probab. 22(2), 1227–1251 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsMichigan State UniversityEast LansingUSA

Personalised recommendations