Time-time Covariance for Last Passage Percolation with Generic Initial Profile

  • P. L. FerrariEmail author
  • A. Occelli


We consider time correlation for KPZ growth in 1 + 1 dimensions in a neighborhood of a characteristics. We prove convergence of the covariance with droplet, flat and stationary initial profile. In particular, this provides a rigorous proof of the exact formula of the covariance for the stationary case obtained in Ferrari and Spohn (2011). Furthermore, we prove the universality of the first order correction when the two observation times are close and provide a rigorous bound of the error term. This result holds also for random initial profiles which are not necessarily stationary.


Last passage percolation KPZ universality class Time-time correlations 

Mathematics Subject Classification (2010)

60K35 82C22 82B43 



This work is supported by the German Research Foundation in the Collaborative Research Center 1060 “The Mathematics of Emergent Effects”, project B04.


  1. 1.
    Baik, J., Ben Arous, G., Péché, S.: Phase transition of the largest eigenvalue for non-null complex sample covariance matrices. Ann. Probab. 33, 1643–1697 (2006)CrossRefGoogle Scholar
  2. 2.
    Baik, J., Ferrari, P.L., Péché, S.: Limit process of stationary TASEP near the characteristic line. Comm. Pure Appl. Math. 63, 1017–1070 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Baik, J., Ferrari, P.L., Péché, S.: Convergence of the two-point function of the stationary TASEP, Singular Phenomena and Scaling in Mathematical Models, Springer, pp. 91–110 (2014)Google Scholar
  4. 4.
    Baik, J., Liu, Z.: Multi-point distribution of periodic TASEP. arXiv:1710.03284 (2017)
  5. 5.
    Baik, J., Liu, Z.: TASEP on a ring in sub-relaxation time scale. Comm. Pure Appl. Math. 71, 747–813 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Baik, J., Rains, E.M.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100, 523–542 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Balázs, M., Cator, E., Seppäläinen, T.: Cube root fluctuations for the corner growth model associated to the exclusion process. Electron J. Probab. 11, 1094–1132 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Basu, R., Ganguly, S.: Time correlation exponents in last passage percolation. arXiv:1807.09260 (2018)
  9. 9.
    Basu, R., Sidoravicius, V., Sly, A.: Last passage percolation with a defect line and the solution of the Slow Bond Problem. arXiv:1408.346 (2014)
  10. 10.
    Borodin, A., Ferrari, P.L.: Large time asymptotics of growth models on space-like paths I: PushASEP. Electron J. Probab. 13, 1380–1418 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055–1080 (2007)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Borodin, A., Ferrari, P.L., Sasamoto, T.: Transition between Airy1 and Airy2 processes and TASEP fluctuations. Comm. Pure Appl. Math. 61, 1603–1629 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Borodin, A., Gorin, V.: Lectures on integrable probability. arXiv:1212.3351 (2012)
  14. 14.
    Borodin, A., Péché, S.: Airy kernel with two sets of parameters in directed percolation and random matrix theory. J. Stat. Phys. 132, 275–290 (2008)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Cator, E., Pimentel, L.: On the local fluctuations of last-passage percolation models. Stoch. Proc. Appl. 125, 879–903 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Chhita, S., Ferrari, P.L., Spohn, H.: Limit distributions for KPZ growth models with spatially homogeneous random initial conditions. Ann. Appl. Probab. 28, 1573–1603 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Corwin, I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrices: Theory Appl. 01, 1130001 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Corwin, I., Ferrari, P.L., Péché, S.: Limit processes for TASEP with shocks and rarefaction fans. J. Stat. Phys. 140, 232–267 (2010)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Corwin, I., Ferrari, P.L., Péché, S.: Universality of slow decorrelation in KPZ models. Ann. Inst. H. Poincaré, Probab. Statist. 48, 134–150 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Corwin, I., Liu, Z., Wang, D.: Fluctuations of TASEP and LPP with general initial data. Ann. Appl. Probab. 26, 2030–2082 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ferrari, P.A., Fontes, L.: Shock fluctuations in the asymmetric simple exclusion process. Probab. Theory Relat. Fields 99, 305–319 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ferrari, P.L.: Slow decorrelations in KPZ growth. J. Stat. Mech., P07022 (2008)Google Scholar
  23. 23.
    Ferrari, P.L.: From interacting particle systems to random matrices. J. Stat. Mech., P10016 (2010)Google Scholar
  24. 24.
    Ferrari, P.L., Ghosal, P., Nejjar, P.: Limit law of a second class particle in TASEP with non-random initial condition. arXiv:1710.02323 (2017)
  25. 25.
    Ferrari, P.L., Nejjar, P.: Anomalous shock fluctuations in TASEP and last passage percolation models. Probab. Theory Relat. Fields 161, 61–109 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ferrari, P.L., Nejjar, P.: Fluctuations of the competition interface in presence of shocks. ALEA Lat. Am. J. Probab. Math. Stat. 14, 299–325 (2017)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Ferrari, P.L., Occelli, A.: Universality of the GOE Tracy-Widom distribution for TASEP with arbitrary particle density. Electron J. Probab. 23(51), 1–14 (2018)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Ferrari, P.L., Spohn, H.: Random Growth Models, The Oxford handbook of random matrix theory. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) , pp. 782–801. Oxford Univ. Press, Oxford (2011)Google Scholar
  29. 29.
    Ferrari, P.L., Spohn, H.: On time correlations for KPZ growth in one dimension. SIGMA 12, 074 (2016)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Johansson, K.: Shape fluctuations and random matrices. Comm. Math. Phys. 209, 437–476 (2000)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Johansson, K.: Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242, 277–329 (2003)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Johansson, K.: Two time distribution in Brownian directed percolation. Comm. Math. Phys. 351, 441–492 (2017)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Johansson, K.: The two-time distribution in geometric last-passage percolation. arXiv:1802.00729 (2018)
  34. 34.
    Kardar, M., Parisi, G., Zhang, Y.Z.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)ADSCrossRefGoogle Scholar
  35. 35.
    Matetski, K., Quastel, J., Remenik, D.: The KPZ fixed point. arXiv:1701.00018 (2017)
  36. 36.
    De Nardis, J., Le Doussal, P.: Tail of the two-time height distribution for KPZ growth in one dimension, J. Stat. Mech 053212 (2017)Google Scholar
  37. 37.
    De Nardis, J., Le Doussal, P.: Two-time height distribution for 1D KPZ growth: the recent exact result and its tail via replica, J. Stat. Mech 093203 (2018)Google Scholar
  38. 38.
    De Nardis, J., Le Doussal, P., Takeuchi, K.A.: Memory and universality in interface growth. Phys. Rev. Lett. 118, 125701 (2017)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Nejjar, P.: Transition to shocks in TASEP and decoupling of last passage times. arXiv:1705.08836 (2017)
  40. 40.
    Pimentel, L.P.R.: Ergodicity of the KPZ fixed point. arXiv:1708.06006 (2017)
  41. 41.
    Pimentel, L.P.R.: Local behavior of airy processes. J. Stat. Phys. 173, 1614–1638 (2018)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Prähofer, M., Spohn, H.: Current fluctuations for the totally asymmetric simple exclusion process In and out of equilibrium. In: Sidoravicius, V. (ed.) . Progress in Probability, Birkhäuser (2002)Google Scholar
  43. 43.
    Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071–1106 (2002)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Quastel, J.: Introduction to KPZ. Curr. Dev. Math., 125–194 (2011)Google Scholar
  45. 45.
    Quastel, J., Remenik, D.: Airy processes and variational problems, Topics in percolative and disordered systems. In: Ramírez, A., Ben Arous, G., Ferrari, P., Newman, C., Sidoravicius, V., Vares, M. (eds.) . Springer (2014)Google Scholar
  46. 46.
    Quastel, J., Spohn, H.: The one-dimensional KPZ equation and its universality class. J. Stat. Phys. 160, 965–984 (2015)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Rost, H.: Non-equilibrium behavior of a many particle system: density profile and local equilibrium. Z. Wahrsch. Verw. Gebiete 58, 41–53 (1981)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38, L549–L556 (2005)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Takeuchi, K.A.: Statistics of circular interface fluctuations in an off-lattice Eden model. J. Stat. Mech., P05007 (2012)Google Scholar
  50. 50.
    Takeuchi, K.A.: Crossover from growing to stationary interfaces in the Kardar-Parisi-Zhang class. Phys. Rev. Lett. 110, 210604 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    Takeuchi, K.A.: An appetizer to modern developments on the Kardar–Parisi–Zhang universality class. Physica A 504, 77–105 (2016)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Takeuchi, K.A.: Private communication (2018)Google Scholar
  53. 53.
    Takeuchi, K.A., Akimoto, T.: Characteristic sign renewals of Kardar–Parisi–Zhang fluctuations. J. Stat. Phys. 164, 1167–1182 (2016)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Takeuchi, K.A., Sano, M.: Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence. J. Stat. Phys. 147, 853–890 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute for Applied MathematicsBonn UniversityBonnGermany

Personalised recommendations