Advertisement

A Quantum Key Distribution Protocol Based on the EPR Pairs and its Simulation

  • Jian Li
  • Hengji LiEmail author
  • Na Wang
  • Chaoyang Li
  • Yanyan Hou
  • Xiubo Chen
  • Yuguang Yang
Article
  • 17 Downloads

Abstract

A novel quantum key distribution protocol based on the entanglement and dense coding is proposed, in which the memory of the quantum state is not needed. Every four particles are divided into a group, in which {(1,2),(3,4)} or {(1,3),(2,4)} are in entanglement. Some of the groups are used to transmit the message, and the others are used to check for the eavesdropping. In the message mode, the authorized party, who does not need to know the specific location information of the group, can make the unitary operation to the first and the fourth of the group. In addition, the trade-off between the information and the disturbance is calculated under the intercept-measure-resend attack and the entanglement-measure attack, which proves that the protocol is asymptotically secure. Moreover, the quantum circuit simulation of the protocol is shown.

Keywords

Quantum key distribution Entanglement Quantum circuit simulation 

Notes

References

  1. 1.
    Wang N, Fu J, Zeng J, Bhargava BK (2018) Source-location privacy full protection in wireless sensor networks. Inf Sci 444:105MathSciNetCrossRefGoogle Scholar
  2. 2.
    Wang N, Fu J, Li J, Bhargava B (2019) Source-location privacy protection based on anonymity cloud in wireless sensor networks. IEEE Transactions on Information Forensics and Security 15(1):100–114Google Scholar
  3. 3.
    Jiang D, Huo L, Lv Z, Song H, Qin W (2018) A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Transactions on Intelligent Transportation Systems (99)1Google Scholar
  4. 4.
    Wang N, Fu J, Bhargava BK, Zeng J (2018) Efficient retrieval over documents encrypted by attributes in cloud computing. IEEE Transactions on Information Forensics and Security 13(10): 2653CrossRefGoogle Scholar
  5. 5.
    Wang N, Zeng J (2017) All-direction random routing for source-location privacy protecting against parasitic sensor networks. Sensors 17(3):614CrossRefGoogle Scholar
  6. 6.
    Diffie W, Hellman M (1976) New directions in cryptography. IEEE Trans Inf Theory 22(6):644MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Lv Z, Kong W, Zhang X, Jiang D, Lv H, Lu X (2019) Intelligent security planning for regional distributed energy internet. IEEE Transactions on Industrial InformaticsGoogle Scholar
  8. 8.
    Huo L, Jiang D (2019) Stackelberg game-based energy-efficient resource allocation for 5g cellular networks. Telecommun Syst: 1–12Google Scholar
  9. 9.
    Huo L, Jiang D, Lv Z (2018) Soft frequency reuse-based optimization algorithm for energy efficiency of multi-cell networks. Comput Electric Eng 66:316CrossRefGoogle Scholar
  10. 10.
    Wang F, Jiang D, Qi S (2019) An adaptive routing algorithm for integrated information networks. China Commun 17(1):196Google Scholar
  11. 11.
    Shor PW (1994) .. In: Proceedings 35th annual symposium on foundations of computer science. IEEE, pp 124–134Google Scholar
  12. 12.
    Grover LK (1997) Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett 79(2):325CrossRefGoogle Scholar
  13. 13.
    He Y, Gorman S, Keith D, Kranz L, Keizer J, Simmons M (2019) A two-qubit gate between phosphorus donor electrons in silicon. Nature 571(7765):371CrossRefGoogle Scholar
  14. 14.
    Ye Y, Ge ZY, Wu Y, Wang S, Gong M, Zhang YR, Zhu Q, Yang R, Li S, Liang F, et al. (2019) Propagation and localization of collective excitations on a 24-qubit superconducting processor. Phys Rev Lett 123(5):050502CrossRefGoogle Scholar
  15. 15.
    Bennett CH, Brassard G (2014) Quantum cryptography: public key distribution and coin tossing. Theor Comput Sci 560(P1):7MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Bennett CH, Bessette F, Brassard G, Salvail L, Smolin J (1992) Experimental quantum cryptography. J Cryptol 5(1):3zbMATHCrossRefGoogle Scholar
  17. 17.
    Shor P, Preskill J (2000) Simple proof of security of the bb84 quantum key distribution protocol. Phys Rev Lett 85(2):441CrossRefGoogle Scholar
  18. 18.
    Ekert AK (1991) Quantum cryptography based on bell’s theorem. Phys Rev Lett 67(6):661MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Bennett CH, Brassard G, Mermin ND (1992) Quantum cryptography without bell’s theorem. Phys Rev Lett 68(5):557MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Bruß D (1998) Optimal eavesdropping in quantum cryptography with six states. Phys Rev Lett 81(14):3018CrossRefGoogle Scholar
  21. 21.
    Li J, Li N, Li LL, Wang T (2016) One step quantum key distribution based on epr entanglement. Scientific Reports 6: 28767CrossRefGoogle Scholar
  22. 22.
    Wang Q, Zhang CH, Luo S, Guo GC (2016) An enhanced proposal on decoy-state measurement device-independent quantum key distribution. Quantum Inf Process 15(9):3785MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Máttar A, Acín A (2016) Implementations for device-independent quantum key distribution. Physica Scripta 91(4):043003CrossRefGoogle Scholar
  24. 24.
    Kawakami S, Sasaki T, Koashi M (2016) Security of the differential-quadrature-phase-shift quantum key distribution. Phys Rev A 94(2):022332CrossRefGoogle Scholar
  25. 25.
    Fröhlich B, Lucamarini M, Dynes JF, Comandar LC, Tam WWS, Plews A, Sharpe AW, Yuan Z, Shields AJ (2017) Long-distance quantum key distribution secure against coherent attacks. Optica 4(1):163CrossRefGoogle Scholar
  26. 26.
    Hatakeyama Y, Mizutani A, Kato G, Imoto N, Tamaki K (2017) Differential-phase-shift quantum-key-distribution protocol with a small number of random delays. Phys Rev A 95(4):042301CrossRefGoogle Scholar
  27. 27.
    Hwang WY, Su HY, Bae J (2017) Improved measurement-device-independent quantum key distribution with uncharacterized qubits. Phys Rev A 95(6):062313CrossRefGoogle Scholar
  28. 28.
    Lizama-Pérez LA, López JM, De Carlos López E (2016) Quantum key distribution in the presence of the intercept-resend with faked states attack. Entropy 19(1):4CrossRefGoogle Scholar
  29. 29.
    Lai H, Luo MX, Zhan C, Pieprzyk J, Orgun MA (2017) An improved coding method of quantum key distribution protocols based on fibonacci-valued oam entangled states. Phys Lett A 381(35):2922zbMATHCrossRefGoogle Scholar
  30. 30.
    Pastorello D (2017) A quantum key distribution scheme based on tripartite entanglement and violation of chsh inequality. International Journal of Quantum Information 15(05):1750040MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Wang Y, Bao WS, Bao HZ, Zhou C, Jiang MS, Li HW (2017) High-dimensional quantum key distribution with the entangled single-photon-added coherent state. Phys Lett A 381(16):1393CrossRefGoogle Scholar
  32. 32.
    Long GL, Liu XS (2002) Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A 65(3):032302CrossRefGoogle Scholar
  33. 33.
    Boström K, Felbinger T (2002) Deterministic secure direct communication using entanglement. Phys Rev Lett 89(18):187902CrossRefGoogle Scholar
  34. 34.
    Cai QY, Li BW (2004) Improving the capacity of the Boström-Felbinger protocol. Phys Rev A 69(5):054301CrossRefGoogle Scholar
  35. 35.
    Gao T, Yan FL, Wang Z (2005) Deterministic secure direct communication using ghz states and swapping quantum entanglement. J Phys A Math Gen 38(25):5761MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Chamoli A, Bhandari C (2009) Secure direct communication based on ping–pong protocol. Quantum Inf Process 8(4):347MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Deng FG, Long GL (2004) Secure direct communication with a quantum one-time pad. Physical Review A 69(5):052319CrossRefGoogle Scholar
  38. 38.
    Qing-Yu C, Bai-Wen L (2004) Deterministic secure communication without using entanglement. Chin Phys Lett 21(4):601CrossRefGoogle Scholar
  39. 39.
    Lucamarini M, Mancini S (2005) Secure deterministic communication without entanglement. Phys Rev Lett 94(14):140501CrossRefGoogle Scholar
  40. 40.
    Jiang D, Chen Y, Gu X, Xie L, Chen L (2017) Deterministic secure quantum communication using a single d-level system. Scientific Reports 7:44934CrossRefGoogle Scholar
  41. 41.
    Guerra AGDAH, Rios FFS, Ramos RV (2016) Quantum secure direct communication of digital and analog signals using continuum coherent states. Quantum Inf Process 15(11):4747MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Wang C, Deng FG, Li YS, Liu XS, Long GL (2005) Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A 71(4):044305CrossRefGoogle Scholar
  43. 43.
    Li J, Song D, Li R, Lu X (2015) A quantum secure direct communication protocol based on four-qubit cluster state. Secur Commun Netw 8(1):36CrossRefGoogle Scholar
  44. 44.
    Li J, Pan Z, Sun F, Chen Y, Wang Z, Shi Z (2015) Quantum secure direct communication based on dense coding and detecting eavesdropping with four-particle genuine entangled state. Entropy 17(10):6743MathSciNetCrossRefGoogle Scholar
  45. 45.
    Zhao XL, Li JL, Niu PH, Ma HY, Ruan D (2017) Two-step quantum secure direct communication scheme with frequency coding. Chinese Phys B 26(3):030302CrossRefGoogle Scholar
  46. 46.
    Nguyen BA (2004) Quantum dialogue. Phys Lett A 328(1):6MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Wang H, Zhang YQ, Liu XF, Hu YP (2016) Efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf Process 15(6):2593MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Zarmehi F, Houshmand M (2016) Controlled bidirectional quantum secure direct communication network using classical xor operation and quantum entanglement. IEEE Commun Lett 20(10):2071CrossRefGoogle Scholar
  49. 49.
    Kao SH, Hwang T (2016) Controlled quantum dialogue robust against conspiring users. Quantum Inf Process 15(10):4313MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Zhou NR, Li JF, Yu ZB, Gong LH, Farouk A (2017) New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf Process 16(1):4zbMATHCrossRefGoogle Scholar
  51. 51.
    Liu ZH, Chen HW (2017) Cryptanalysis and improvement of efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf Process 16(9):229MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Gao F, Guo FZ, Wen QY, Zhu F (2009) Comparing the efficiency of different detection strategies of the ’ping-pong’ protocol. Sci. China Ser. G-Phys. Mech. Astron 39(2):161Google Scholar
  53. 53.
    Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin JA, Weinfurter H (1995) Elementary gates for quantum computation. Phys Rev A 52(5):3457CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Quantum Information ResearchZaoZhuang UniversityZaoZhuangChina
  2. 2.School of Computer ScienceBeijing University of Posts TelecommunicationsBeijingChina
  3. 3.Information Security Center, State Key Laboratory Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  4. 4.Faculty of Information TechnologyBeijing University of TechnologyBeijingChina

Personalised recommendations