Advertisement

An Angle Rotate-QAM aided Differential Spatial Modulation for 5G Ubiquitous Mobile Networks

  • Yajun Fan
  • Liuqing Yang
  • Dalong Zhang
  • Gangtao Han
  • Di ZhangEmail author
Article
  • 34 Downloads

Abstract

As a novel multiple-input multiple-output (MIMO) wireless transmission technique, differential spatial modulation (DSM) can reduce the computational complexity, and henceforth provides a feasible communications option in terms of the intelligence computing for fifth generation (5G) ubiquitous mobile networks. In this paper, a novel high-rate design scheme relying on angle rotate quadrature amplitude modulation (ARQAM) is proposed for DSM schemes. Through layering QAM symbols, the final transmit matrix can be expressed as the superposition of the different layered matrices. Numercial results indicate that the proposed scheme outperforms the identical-throughput multi-ring APSK-aided and PSK-aided DSM schemes. Additionally, we investigate the impact of two-dimensional (2D) and three-dimensional (3D) regular-shaped geometry-based stochastic model (RS-GBSM) for non-isotropic scattering narrowband MIMO vehicle-to-vehicle (V2V) Ricean fading channel for the proposed ARQAM-aided DSM. Its performance is limited by the V2V channel required for differential detection. Moreover, the influences adopted with 3D MIMO channel model are more significant than 2D MIMO channel model.

Keywords

Heterogeneous networks Intelligent computing Compound phase shift Angle rotate-QAM Differential spatial modulation 

Notes

References

  1. 1.
    Gu Y, Wang Y, Liu T, Ji Y, Liu Z, Li P, Wang X, Ren F EmoSense: Ubiquitous Data-driven Emotion Sensing via Off-the-shelf WiFi Devices. IEEE Trans. Emerging Topics Comput. Intell. [accepted]Google Scholar
  2. 2.
    Liu Q, Hu X, Ngai EC-H, Liang M, Leung VCM, Cai Z, Yin J (2016) A security patch addressing bandwidth request vulnerabilities in the IEEE 802.16 standard. IEEE Netw 30(5):26–34CrossRefGoogle Scholar
  3. 3.
    Liu Q, Li P, Zhao W, Cai W, Yu S, Leung VCM (2018) A Survey on Security Threats and Defensive Techniques of Machine Learning: A data driven view. IEEE Access 6(99):12103–12117CrossRefGoogle Scholar
  4. 4.
    Feng J, Liu Z, Wu C (2019) Mobile Edge Computing for Iternet of Vehicles: Offloading framework and job scheduling. IEEE Veh Technol Mag 14(1):28–36CrossRefGoogle Scholar
  5. 5.
    Feng J, Liu Z, Wu C (2017) AVE: Autonomous Vehicular Edge Computing Framework with ACO-based Scheduling. IEEE Trans Veh Technol 66(12):10660–10675CrossRefGoogle Scholar
  6. 6.
    Mesleh R, Haas H, Ahn C, Yun S (2006) Spatial Modulation - A New Low Complexity Spectral Efficiency Enhancing Technique. In: Proc. of IEEE 1st Int. Conf. Commun. Netw., Beijing, China, pp 1–5Google Scholar
  7. 7.
    Mesleh RY, Haas H, Sinanovic S, Ahn C, Yun S (2008) Spatial Modulation. IEEE Trans Veh Technol 57(4):2228–2241CrossRefGoogle Scholar
  8. 8.
    Wen M, Cheng X, Yang L (2017) Index modulation for 5G wireless communications. Springer, BerlinGoogle Scholar
  9. 9.
    Cheng X, Zhang M, Wen M, Yang L (2018) Index Modulation for 5G: Striving to do more with less. IEEE Wirel Commun Mag 25(2):126–132CrossRefGoogle Scholar
  10. 10.
    Li F, Ding Z, Wang Y, Li J, Liu Z (2017) BEM Channel Estimation for OFDM System in Fast Time-varying Channel. IEICE Trans Commun E100.B(8):1462–1471CrossRefGoogle Scholar
  11. 11.
    Bian Y, Wen M, Cheng X, Poor HV, Jiao B (2013) A differential scheme for spatial modulation. In: Proceedings of IEEE GLOBECOM, Atlanta, GA, pp 4030–4035Google Scholar
  12. 12.
    Ishikawa N, Sugiura S (2014) Unified differential spatial modulation. IEEE Wirel Commun Lett 3(4):337–340CrossRefGoogle Scholar
  13. 13.
    Bian Y, Cheng X, Wen M, Yang L, Poor HV, Jiao B (2015) Differential Spatial Modulation. IEEE Trans Veh Technol 64(7):3262–3268Google Scholar
  14. 14.
    Ishikawa N, Sugiura S (2017) Rectangular Differential Spatial Modulation for Open-Loop Noncoherent massive-MIMO Downlink. IEEE Trans Wirel Commun 16(3):1908–1920CrossRefGoogle Scholar
  15. 15.
    Li Z, Cheng X, Han S (2015) A Low-Complexity Optimal Sphere Decoder for Differential Spatial Modulation. Proceedings of IEEE GLOBECOM, San Diego, pp 1–6Google Scholar
  16. 16.
    Wen M, Cheng X, Bian Y (2015) A Low-Complexity near-ML Differential Spatial Modulation Detector. IEEE Signal Process Lett 22(11):1834–1838CrossRefGoogle Scholar
  17. 17.
    Xiao L, Yang P, Lei X (2015) A Low-Complexity Detection Scheme for Differential Spatial Modulation. IEEE Commun Lett 19(9):1516–1519CrossRefGoogle Scholar
  18. 18.
    Liu J, Xiao L, Xiao Y (2017) A Low-complexity Soft-Decision-aided Detector for Differential Spatial Modulation. In: IEEE 85th VTC Spring, Sydney, pp 1–6Google Scholar
  19. 19.
    Hwang CS, Nam SH, Chung J, Tarokh V (2005) Differential space time block codes using nonconstant modulus constellations. IEEE Trans Signal Process 51(11):2955–2964MathSciNetCrossRefGoogle Scholar
  20. 20.
    Martin PA (2015) Differential Spatial Modulation for APSK in Time-Varying Fading Channels. IEEE Commun Lett 19(7): 1261–1264CrossRefGoogle Scholar
  21. 21.
    Liu J, Dan L, Yang P, Xiao L, Yu F, Xiao Y (2017) High-rate APSK-aided Differential Spatial Modulation: Design method and performance analysis. IEEE Commun Lett 21(1):168–171CrossRefGoogle Scholar
  22. 22.
    Hwang J, Chiu Y, Liao C (2008) Performance Analysis of an Angle Differential-QAM Scheme for Resolving Phase Ambiguity, Advanced Communication Technology, 2008. in IEEE 10th ICACT, Phoenix pp 1–6Google Scholar
  23. 23.
    Zhang D, Liu Y, Dai L, Bashir AK, Nallanathan A, Shim B Performance Analysis of FD-NOMA-based Decentralized V2X Systems. IEEE Trans. Commun., [early access:] https://ieeexplore.ieee.org/document/8666065
  24. 24.
    Cheng X, Wang C, Laurenson DI, Salous S, Vasilakos AV (2009) An Adaptive Geometry-based Stochastic Model for Non-isotropic MIMO Mobile-to-Mobile Channels. IEEE Trans Wirel Commun 8(9):4824–4835CrossRefGoogle Scholar
  25. 25.
    Yuan Y, Wang C, Cheng X, Ai B, Laurenson DI (2014) Novel 3D Geometry-Based Stochastic Models for Non-Isotropic MIMO Vehicle-to-Vehicle Channels. IEEE Trans Wirel Commun 13(1):298–309CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information EngineeringZhengzhou UniversityZhengzhouChina
  2. 2.Department of Electrical and Computer EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations