Advertisement

Analysis of the Mathematical Model of Open Coaxial Measuring Microwave Converters

  • Liu ChangEmail author
  • Alexander Panchenko
  • Bondarenko Igor Nikolaevich
  • Ibraimov Ilver
Article
  • 25 Downloads

Abstract

The open coaxial sensor (OCS) enables online non-destructive testing of a wide range of objects. To solve the electrodynamics problem in the OCS design, this paper puts forward a mathematical model for an OCS with a sample located outside the sensor, and performs the theoretical calibration of the OCS in cylindrical form. The proposed method can be applied to OCSs with different forms of working area. The findings help to develop algorithms and programs for qualitative analysis on OCS features, and to compute the parameters and functions of OCS design. In addition, the analysis method can identify the basic and side effects of the qualitative level, and facilitate the construction of actual OCS designs.

Keywords

Open coaxial sensor (OCS) Mathematical model Analytical method Electrodynamics problem 

Notes

Acknowledgments

The work was supported by projects of Heilongjiang Bayi Agricultural University “XDB2014-18” and “NDJY15Z13”.

References

  1. 1.
    Shchegoleva T (1996) The study of biological objects in the millimeter range of radio waves. Naukova Dumka, Kyiv, pp 1–182Google Scholar
  2. 2.
    Liu S, Fu W, He L et al (2017) Distribution of primary additional errors in fractal encoding method. Multimed Tools Appl 76(4):5787–5802CrossRefGoogle Scholar
  3. 3.
    Liu S, Pan Z, Fu W, Cheng X (2017) Fractal generation method based on asymptote family of generalized Mandelbrot set and its application. JNSA 10(3):1148–1161MathSciNetzbMATHGoogle Scholar
  4. 4.
    Liu S, M L, Liu G et al (2017) A novel distance metric: generalized relative entropy. Entropy 19(6):269.  https://doi.org/10.3390/e19060269 CrossRefGoogle Scholar
  5. 5.
    Hyde MW, Havrilla MJ, Bogle AE (2016) Nondestructive determination of the permittivity tensor of a uniaxial material using a two-port clamped coaxial probe. IEEE T Microw Theory 64(1):239–246.  https://doi.org/10.1109/TMTT.2015.2502242 CrossRefGoogle Scholar
  6. 6.
    Ivanov VK, Silin AO, Stadnik AM (2011) Definition of complex dielectric permeability of liquids by coaxial probes with the use of substrates from Metaterial Kharkiv. Journal of Radiophysics and Electronics 16(1):91–98Google Scholar
  7. 7.
    Boybay MS, Ramahi OM (2011) Open-ended coaxial line probes with negative permittivity materials. IEEE Trans Antennas Propag 59(5):1765–1769.  https://doi.org/10.1109/TAP.2011.2123056
  8. 8.
    Detinko MB, Hoptyar CA (1993) Electrodynamic model of microwave resonator with annular measuring hole, loaded on multilayer semiconductor structure. RUSS Phys J+ 9:53–58Google Scholar
  9. 9.
    Abdelgwad AH, Said TM (2015) Measured dielectric permittivity of chlorinated drinking water in the microwave frequency range. In: Microwave Symposium (MMS) IEEE 15th Mediterranean, pp 1–4.  https://doi.org/10.1109/MMS.2015.7375497
  10. 10.
    Hyde MW, Havrilla MJ (2016) Broadband, nondestructive microwave sensor for characterizing magnetic sheet materials. IEEE Sensors Journal 16(12):4740–4748.  https://doi.org/10.1109/JSEN.2016.2548560 CrossRefGoogle Scholar
  11. 11.
    Kempin M, Ghasr M, Case J, Zoughi R (2014) Modified waveguide flange for evaluation of stratified composites. IEEE Trans Instrum Meas 63(6):1524–1534.  https://doi.org/10.1109/TIM.2013.2291952 CrossRefGoogle Scholar
  12. 12.
    Cenanovic A, Schramm M, Schmidt L (2011) Measurement setup for non-destructive complex permittivity determination of solid materials using two coupled coaxial probes. IEEE MTT-S Int Microw Symp Dig:1–4.  https://doi.org/10.1109/MWSYM.2011.5972838
  13. 13.
    Hyde MW, Bogle AE, Havrilla MJ (2014) Nondestructive characterization of PEC-backed materials using the combined measurements of a rectangular waveguide and coaxial probe. IEEE Microw Wireless Compon Lett 24(11):808–810.  https://doi.org/10.1109/TMTT.2015.2502242 CrossRefGoogle Scholar
  14. 14.
    Hyde MW, Stewart JW, Havrilla MJ, Baker WP, Rothwell EJ, Nyquist DP (2009) Nondestructive electromagnetic material characterization using a dual waveguide probe: a full wave solution. Radio Sci 44:1–13CrossRefGoogle Scholar
  15. 15.
    Yee LK, Hau NW, Kuan CB, Nan PY, Sheng LH, Hock LE (2015) Modeling of microwave elliptical and conical tip sensors for in vivo dielectric measurements RF and microwave. In: Conference (RFM) 2015 IEEE international, pp 222–226.  https://doi.org/10.1109/RFM.2015.7587749
  16. 16.
    Panchenko AY (1998) Modeling a small aperture resonator type microwave meter of substance parameters. Telecommunications and Radio Engineering 52(8):118–121.  https://doi.org/10.1615/TelecomRadEng.v52.i8.80 CrossRefGoogle Scholar
  17. 17.
    Lu C, Panchenko AY, Slipchenko MI (2016) An integral equation for the field distribution within the aperture plane of the coaxial sensor. Telecommunications and Radio Engineering 75(7):587–594.  https://doi.org/10.1615/TelecomRadEng.v75.i7.20 CrossRefGoogle Scholar
  18. 18.
    Liu C (2016) Analysis of the properties of the integral equation for the field distribution across the aperture of a coaxial sensor. Telecommunication and Radio Engineering 75(11):969–977.  https://doi.org/10.1615/TelecomRadEng.v75.i11.20 CrossRefGoogle Scholar
  19. 19.
    Ding G, Wu Q, Zhang L, Lin Y, Tsiftsis TA, Yao YD (2018) An amateur drone surveillance system based on cognitive internet of things. IEEE Commun Mag 56(1):29–35 https://arxiv.org/abs/1711.10738 CrossRefGoogle Scholar
  20. 20.
    Xue Z, Wang J, Ding G, Wu Q, Lin Y, Tsiftsis TA (2018) Device-to-device communications underlying UAV-supported social networking. IEEE Access 6(1):34488–34502CrossRefGoogle Scholar
  21. 21.
    Zhang Z, Guo X, Lin Y (2018) Trust management method of D2D communication based on RF fingerprint identification. IEEE Access 6:66082–66087CrossRefGoogle Scholar
  22. 22.
    Tu Y, Lin Y, Wang J et al (2018) Semi-supervised learning with generative adversarial networks on digital signal modulation classification. CMC-Comput Mater Con 55(2):243–254Google Scholar
  23. 23.
    Lin Y, Li Y, Yin X et al (2018) Multisensor fault diagnosis modeling based on the evidence theory. IEEE Trans Reliab (99):1–9Google Scholar
  24. 24.
    Sun J, Wang W, Zhang K et al (2018) A multi-focus image fusion algorithm in 5G communications. Multimed Tools Appl (3):1–20Google Scholar
  25. 25.
    Huang R, Zhang D (2008) Analysis of open-ended coaxial probes by using a two-dimensional finite-difference frequency-domain method. IEEE Trans Instrum Meas 57(5):931–939CrossRefGoogle Scholar
  26. 26.
    Lin Y, Zhu X, Zheng Z et al (2017) The individual identification method of wireless device based on dimensionality reduction and machine learning. J Supercomput 5:1–18.  https://doi.org/10.1007/s11227-017-2216-2 CrossRefGoogle Scholar
  27. 27.
    Lin Y, Wang C, Wang J, Dou Z (2016) A novel dynamic Spectrum access framework based on reinforcement learning for cognitive radio sensor networks. Sensors 16(10):1–22.  https://doi.org/10.3390/s16101675 CrossRefGoogle Scholar
  28. 28.
    Wagner N, Schwing M, Scheuermann A (2014) Numerical 3-D FEM and experimental analysis of the open-ended coaxial line technique for microwave dielectric spectroscopy on soil. IEEE Trans Geosci Remote Sens 52(2):880–893CrossRefGoogle Scholar
  29. 29.
    Panchenko AY, Slipchenko MI, Borodkina AN (2014) On the development of a practical technique of theoretical calibration of resonant sensors for near-field microwave diagnostics. Telecommunication and Radio Engineering 73(15):1397–1407CrossRefGoogle Scholar
  30. 30.
    Tang B, Tu Y, Zhang S et al (2018) Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks. IEEE Access 99:1–1Google Scholar
  31. 31.
    Ma X, Wang T, Lin Y et al (2018) Parallel iterative inter-carrier interference cancellation in underwater acoustic orthogonal frequency division multiplexing. Wirel Pers Commun 5:1–14Google Scholar
  32. 32.
    Wang H, Guo L, Dou Z et al (2018) A new method of cognitive signal recognition based on hybrid information entropy and D-S evidence theory. Mobile Netw Appl 4:1–9Google Scholar
  33. 33.
    Mitra R (1977) Computational methods in electrodynamics. Publishing house Mir, p 485Google Scholar
  34. 34.
    Panchenko BA (1970) Tenzornye functions of the green equations of Maxwell for cylindrical areas. Radio Engineering 15:82–91Google Scholar
  35. 35.
    Tai CT (1983) Dyadic Grene's functions for a coaxial line. IEEE T Antenn Propag 48(2):355–358MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Hosseini MH, Heidar H, Shams MH (2017) Wideband nondestructive measurement of complex permittivity and permeability using coupled coaxial probes. IEEE Trans Instrumen Meas 66(1):148–157CrossRefGoogle Scholar
  37. 37.
    Mingming W, Liu C, Panchenko AY, Slipchenko MI (2015) Evaluation of influence of microwave radiation sensor in the form of an open end of the coaxial line on its metrological characteristics. Telecommunications and Radio Engineering 74(15):1355–1366.  https://doi.org/10.1615/TelecomRadEng.v74.i15.40 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Heilongjiang Bayi Agricultural UniversityDaqingChina
  2. 2.Kharkiv National University of Radio ElectronicsKharkivUkraine

Personalised recommendations