Mobile Networks and Applications

, Volume 24, Issue 6, pp 1975–1984 | Cite as

Healing Coverage Holes for Big Data Collection in Large-Scale Wireless Sensor Networks

  • Jie Feng
  • Hongbin ChenEmail author


The quality of service is severely degraded by coverage holes in wireless sensor networks. This paper focuses on the coverage hole healing (CHH) problem for big data collection in a large-scale wireless sensor network (LS-WSN) where the LS-WSN containing both static sensors and mobile sensors with the topology control of LEACH algorithm. Meanwhile, the data volume transmitted by each sensor node may be inconsistent. Specifically, the target of the CHH problem is to find an optimal subset of mobile nodes from all mobile nodes while maximizing the transmission times (TT) that all dispatched mobile nodes can transmit in their lifetime. Hence, from the data-centric perspective, we propose a greedy healing algorithm (GHA) via the greedy-based heuristic strategy with low computational complexity to solve this CHH problem. Simulation results show that the proposed GHA can efficiently heal the coverage holes which significantly prolongs the network lifetime and observably enhances the quality of service (QoS) of WSNs while increasing the TT, transmitted data volume (TDV) and average residual energy of all dispatched mobile nodes.


Coverage holes Large-scale wireless sensor networks Big data Coverage hole healing Greedy healing algorithm 



This research was supported by the National Natural Science Foundation of China (61671165, 6176060053), the Guangxi Natural Science Foundation (2016GXNSFGA380009), the Fund of Key Laboratory of Cognitive Radio and Information Processing (Guilin University of Electronic Technology), Ministry of Education, China and the Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing (CRKL170101), and the Innovation Project of GUET Graduate Education (2017YJCX27).


  1. 1.
    Oliveira LML, Rodrigues JJPC (2011) Wireless sensor networks: a survey on environmental monitoring. J Commun 6(2):143–151CrossRefGoogle Scholar
  2. 2.
    Wang B (2011) Coverage problems in sensor networks: a survey. ACM Comput Surv 43(4):32CrossRefGoogle Scholar
  3. 3.
    Arthur WB (2011) The second economy, McKinsey QuartGoogle Scholar
  4. 4.
    Liu Y, He Y, Li M, Wang J, Liu K, Li X (2013) Does wireless sensor network scale? A measurement study on green orbs. IEEE Trans Parallel Distrib Syst 24(10):1983–1993CrossRefGoogle Scholar
  5. 5.
    Nasipuri A, Cox R, Conrad J, Van Der Zel L, Rodriguez B, and McKosky R (2010) Design considerations for a large-scale wireless sensor network for substation monitoring, in Proc. 5th IEEE Int. Workshop Pract. Issues Build. Sens. Netw. Appl., pp. 866–873Google Scholar
  6. 6.
    Jia M, Yin Z, Guo Q, Liu G, Gu X (2018) Toward improved offloading efficiency of data transmission in the IoT-cloud by leveraging secure truncating OFDM. IEEE Internet of Things J 99:1–8Google Scholar
  7. 7.
    Jia M, Yin Z, Guo Q, Liu G, Gu X (2018) Downlink design for spectrum efficient IoT network. IEEE Int of Things Journal 5(5):3397–3404CrossRefGoogle Scholar
  8. 8.
    Jia M, Liu X, Gu X, Guo Q (2017) Joint cooperative spectrum sensing and channel selection optimization for satellite communication systems based on cognitive radio. Int J Satellite Commun Netw 35(2):139–150CrossRefGoogle Scholar
  9. 9.
    Jia M, Gu X, Guo Q, Xiang W, Zhang N (2016) Broadband hybrid satellite-terre- strial communication systems based on cognitive radio towards 5G. IEEE Wirel Commun 23(6):96–106CrossRefGoogle Scholar
  10. 10.
    Jia M, Liu X, Yin Z, Guo Q, Gu X (2016) Joint cooperative spectrum sensing and spectrum opportunity for satellite cluster communication networks. Ad Hoc Net 58:231–238CrossRefGoogle Scholar
  11. 11.
    Jia M, Li D, Yin Z, Guo Q, Gu X (2018) High spectral efficiency secure communications with non-orthogonal physical and multiple access layers. IEEE Internet of Things J. 99:1–8Google Scholar
  12. 12.
    Cao X, Liu L, Cheng Y, Shen X (2018) Towards energy-efficient wireless networking in the big data era: a survey. IEEE Commun Surveys & Tutorials 20(1):303–332, First QuarterCrossRefGoogle Scholar
  13. 13.
    Takaishi D, Nishiyama H, Kato N, Miura R (2014) Toward energy efficient big data gathering in densely distributed sensor networks. IEEE Trans Emerg Top Comput 2(3):388–397CrossRefGoogle Scholar
  14. 14.
    Wu M, Tan L, Xiong N (2015) A structure fidelity approach for big data collection in wireless sensor networks. Sensors 15:248–273CrossRefGoogle Scholar
  15. 15.
    Zhu J, Yin X, Bai J, Wang Y (2016) Mobility-assisted big data collecting in wireless sensor networks. Int J Distrib Sens Netw 12(8):18Google Scholar
  16. 16.
    Ding X, Tian Y, Yu Y (2016) A real-time big data gathering algorithm based on indoor wireless sensor networks for risk analysis of industrial operations. IEEE Trans. Ind. Inform. 12(3):1232–1242CrossRefGoogle Scholar
  17. 17.
    Rani S, Ahmed SH, Talwar R, Malhotra J (2017) Can sensors collect big data? An energy-efficient big data gathering algorithm for a WSN. IEEE Trans Ind Inform 13(4):1961–1968CrossRefGoogle Scholar
  18. 18.
    Din S, Ahmed A, Paul A, Rathore MMU, Jeon G (2017) A cluster-based data fusion technique to analyze big data in wireless multi-sensor system. IEEE Access 5:5069–5083CrossRefGoogle Scholar
  19. 19.
    Ang KL, Seng JKP, Zungeru AM (2018) Optimizing energy consumption for big data collection in large-scale wireless sensor networks with mobile collectors. IEEE Syst J 12(1):616–626CrossRefGoogle Scholar
  20. 20.
    Senouci MR, Mellouk A, Assnoune K (2014) Localized movement-assisted sensor deployment algorithm for hole detection and healing. IEEE Trans. Parallel Distrib. Syst. 25(5):1267–1277CrossRefGoogle Scholar
  21. 21.
    Deng X, Tang Z, Yang LT, Lin M, Wang B (2018) Confident information coverage hole healing in hybrid industrial wireless sensor networks. IEEE Trans. Ind. Informat. 14(5):2220–2229CrossRefGoogle Scholar
  22. 22.
    Qiu C, Shen H, and Chen K (2015) An energy-efficient and distributed cooperation mechanism for k-coverage hole detection and healing in WSNs, in Proc. IEEE 12th Int. Conf. Mobile Ad Hoc Sens. Syst., Oct. pp. 73–81Google Scholar
  23. 23.
    Han G, Liu L, Jiang J, Shu L, Hancke G (2017) Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks. IEEE Trans Ind Informat 13(1):135–143CrossRefGoogle Scholar
  24. 24.
    Latif K, Javaid N, Ahmad A, Khan ZA, Alrajeh N, Khan MI (2016) On energy hole and coverage hole avoidance in underwater wireless sensor networks. IEEE Sensors J 16(11):4431–4442CrossRefGoogle Scholar
  25. 25.
    Wang YC, Hu CC, Tseng YC (2008) Efficient placement and dispatch of sensors in a wireless sensor network. IEEE Trans Mobile Comput 7(2):262–274CrossRefGoogle Scholar
  26. 26.
    Yan F, Vergne A, Martins P, Decreusefond L (2015) Homology-based distributed coverage hole detection in wireless sensor networks. IEEE/ACM Trans Netw 23(6):1705–1718CrossRefGoogle Scholar
  27. 27.
    Sahoo PK, Liao W (2015) HORA: a distributed coverage hole repair algorithm for wireless sensor networks. IEEE Trans Mob Comput 14(7):1397–1410CrossRefGoogle Scholar
  28. 28.
    Abolhasan M, Maali Y, Rafiei A, Ni W (2016) Distributed hybrid coverage hole recovery in wireless sensor networks. IEEE Sensors J 16(23):8640–8648Google Scholar
  29. 29.
    Li W, Wu Y (2016) Tree-based coverage hole detection and healing method in wireless sensor networks. Comput Netw 103(24):33–43CrossRefGoogle Scholar
  30. 30.
    Liu B, Ren F, Shen J, Chen H (2010) Advanced self-correcting time synchronization in wireless sensor networks. IEEE Commun Lett 14(4):309–311CrossRefGoogle Scholar
  31. 31.
    Zhang W, Yin Q, Chen H, Gao F, Ansari N (2013) Distributed angle estimation for localization in wireless sensor networks. IEEE Trans Wirel Commun 12(2):527–537CrossRefGoogle Scholar
  32. 32.
    Liu B, Chen H, Zhong Z, Poor HV (2010) Asymmetrical round trip based synchronization-free localization in large-scale underwater sensor networks. IEEE Trans Wirel Commun 9(11):3532–3542CrossRefGoogle Scholar
  33. 33.
    Wang G, Chen H, Li Y, Jin M (2012) On received-signal-strength based localization with unknown transmit power and path loss exponent. IEEE Wirel Commun Lett 1(5):536–539CrossRefGoogle Scholar
  34. 34.
    Chen H, Liu B, Huang P, Liang J, Gu Y (2012) Mobility-assisted node localization based on TOA measurements without time synchronization in wireless sensor networks. ACM Mob Net App 17(1):90–99CrossRefGoogle Scholar
  35. 35.
    Chen L, Chen W, Wang B, Zhang X, Chen H, Yang D (2011) System-level simulation methodology and platform for mobile cellular systems. IEEE Commun Mag 49(7):148–155CrossRefGoogle Scholar
  36. 36.
    Wang G, Chen H (2011) An importance sampling method for TDOA-based source localization. IEEE Trans Wirel Commun 10(5):1560–1568CrossRefGoogle Scholar
  37. 37.
    Chen H, Gao F, Marins MHT, Huang P, Liang J (2013) Accurate and efficient node localization for mobile sensor networks. ACM Mob. Net. App. 18(1):141–147CrossRefGoogle Scholar
  38. 38.
    Chen H, Wang GWZ, So HC, Poor HV (2011) Non-line-of-sight node localization based on semi-definite programming in wireless sensor networks. IEEE Trans Wirel Commun 11(1):108–116CrossRefGoogle Scholar
  39. 39.
    Huang P, Chen H, Xing G, Tan Y (2009) SGF: a state-free gradient-based forwarding protocol for wireless sensor networks. ACM Trans Sensor Net 5(2):1–14CrossRefGoogle Scholar
  40. 40.
    Chen H, Shi Q, Tan R, Poor HV, Sezaki K (2010) Mobile element assisted cooperative localization for wireless sensor networks with obstacles. IEEE Trans Wirel Commun 9(3):956–963CrossRefGoogle Scholar
  41. 41.
    Heinzelman WB, Chandrakasan AP, Balakrishnan H (2002) An application- specific protocol architecture for wireless microsensor networks. IEEE Trans Wirel Commun 1(4):660–670CrossRefGoogle Scholar
  42. 42.
    Amundson I, Koutsoukos XD (2009) A survey on localization for mobile wireless sensor networks, in Proc. 2nd Int. Conf. Mobile Entity Localization Tracking GPS-Less Environ., pp. 235–254Google Scholar
  43. 43.
    Liu Y, Yang Z (2010) Location, localization, and localizability: location- awareness Technology for Wireless Networks. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Cognitive Radio and Information ProcessingGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations