Indoor Localization Using Smartphone Magnetic and Light Sensors: a Deep LSTM Approach

  • Xuyu Wang
  • Zhitao Yu
  • Shiwen MaoEmail author


With the increasing demand for location-based services, indoor localization has attracted great interest. In this paper, we present DeepML, a deep long short-term memory (LSTM) based system for indoor localization using magnetic and light sensors on smartphones. We experimentally verify the feasibility of using bimodal data from magnetic and light sensors for indoor localization for closed environments where there is no ambient light. We then design the DeepML system, which first builds bimodal images by data preprocessing, and then trains a deep LSTM network in the offline phase. Newly received magnetic field and light data are then exploited for estimating the location of the mobile device using a probabilistic method. The extensive experiments verify the effectiveness of the proposed DeepML system.


Indoor localization Deep long short-term memory (LSTM) Magnetic and light sensors Visible light positioning Fingerprinting 



This work is supported in part by the NSF under Grant CNS-1702957, and by the Wireless Engineering Research and Education Center (WEREC) at Auburn University.


  1. 1.
    Khelifi F, Bradai A, Benslimane A, Rawat P, Atri M (2018) A survey of localization systems in internet of things. Springer Mobile Networks and Applications Journal, pp 1–25Google Scholar
  2. 2.
    Kumarasiri R, Alshamaileh K, Tran NH, Devabhaktuni V (2016) An improved hybrid RSS/TDOA wireless sensors localization technique utilizing Wi-Fi networks. Springer Mobile Networks and Applications 21(2):286–295CrossRefGoogle Scholar
  3. 3.
    Kan C, Ding G, Wu Q, Zhang T (2018) Robust localization with crowd sensors: a data cleansing approach. Springer Mobile Networks and Applications 23(1):108–118CrossRefGoogle Scholar
  4. 4.
    Gu Y, Lo A, Niemegeers I (2009) A survey of indoor positioning systems for wireless personal networks. IEEE Commun Surveys Tuts 11(1):13–32CrossRefGoogle Scholar
  5. 5.
    Wang X, Mao S, Pandey S, Agrawal P (2014) CA2T: Cooperative antenna arrays technique for pinpoint indoor localization. In: Proc MobiSPC 2014, Niagara Falls, Canada, pp 392–399Google Scholar
  6. 6.
    Bahl P, Padmanabhan VN (2000) Radar: an in-building RF-based user location and tracking system. In: Proc IEEE INFOCOM’00, Tel Aviv, Israel, pp 775–784Google Scholar
  7. 7.
    Youssef M, Agrawala A (2005) The Horus WLAN location determination system. In: Proc ACM MobiSys’05, Seattle, WA, pp 205–218Google Scholar
  8. 8.
    Caso G, De Nardis L (2017) Virtual and oriented WiFi fingerprinting indoor positioning based on multi-wall multi-floor propagation models. Springer Mobile Networks and Applications 22(5):825–833CrossRefGoogle Scholar
  9. 9.
    Liu H-H (2017) The quick radio fingerprint collection method for a WiFi-based indoor positioning system. Springer Mobile Networks and Applications 22(1):61–71CrossRefGoogle Scholar
  10. 10.
    Xiao J, Wu K, Yi Y, Ni L (2012) FIFS: Fine-grained indoor fingerprinting system. In: Proc IEEE ICCCN’12, Munich, Germany, pp 1–7Google Scholar
  11. 11.
    Wang X, Gao L, Mao S, Pandey S (2017) CSI-Based fingerprinting for indoor localization: a deep learning approach. IEEE Trans Veh Technol 66(1):763–776Google Scholar
  12. 12.
    Chung J, Donahoe M, Schmandt C, Kim I-J, Razavai P, Wiseman M (2011) Indoor location sensing using geo-magnetism. In: Proc ACM MobiSys’11, Bethesda, MD, pp 141–154Google Scholar
  13. 13.
    Storms W, Shockley J, Raquet J (2010) Magnetic field navigation in an indoor environment. In: Proc IEEE UPINLBS’10, Kirkkonummi, Finland, pp 1–10Google Scholar
  14. 14.
    Gozick B, Subbu KP, Dantu R, Maeshiro T (2011) Magnetic maps for indoor navigation. IEEE Trans Instrum Meas 60(12):3883–3891CrossRefGoogle Scholar
  15. 15.
    Shu Y, Bo C, Shen G, Zhao C, Li L, Zhao F (2015) Magicol: Indoor localization using pervasive magnetic field and opportunistic WiFi sensing. IEEE J Sel Areas Commun 33(7):1443–1457CrossRefGoogle Scholar
  16. 16.
    Ma Y, Dou Z, Jiang Q, Hou Z (2016) Basmag: an optimized HMM-based localization system using backward sequences matching algorithm exploiting geomagnetic information. IEEE Sensors J 16(20):7472–7482CrossRefGoogle Scholar
  17. 17.
    Yang Z, Wang Z, Zhang J, Huang C, Zhang Q (2015) Wearables can afford: Light-weight indoor positioning with visible light. In: Proc ACM Mobisys’15, Florence, Italy, pp 317– 330Google Scholar
  18. 18.
    Kuo Y-S, Pannuto P, Hsiao K-J, Dutta P (2014) Luxapose: Indoor positioning with mobile phones and visible light. In: Proc ACM MobiCom’14, Maui, HI, pp 447–458Google Scholar
  19. 19.
    Li L, Hu P, Peng C, Shen G, Zhao F (2014) Epsilon: a visible light based positioning system. In: Proc USENIX NSDI’14, Seattle, WA, pp 331–343Google Scholar
  20. 20.
    Zhang C, Zhang X (2016) LiTell: Robust indoor localization using unmodified light fixtures. In: Proc ACM MobiCom’16, New York, NY, pp 230–242Google Scholar
  21. 21.
    Xu Q, Zheng R, Hranilovic S (2015) IDyLL: Indoor localization using inertial and light sensors on smartphones. In: Proc ACM UbiComp’15, Osaka, Japan, pp 307–318Google Scholar
  22. 22.
    Zhao Z, Wang J, Zhao X, Peng C, Guo Q, Wu B (2017) NaviLight: Indoor localization and navigation under arbitrary lights. In: Proc IEEE INFOCOM’17, Atlanta, GA, pp 1–9Google Scholar
  23. 23.
    Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: Continual prediction with lstm. J Neural Comput 12(10):2451–2471CrossRefGoogle Scholar
  24. 24.
    Greff K, Srivastava RK, Koutníik J, Steunebrink BR, Schmidhuber J (2017) Lstm: a search space odyssey. IEEE Trans Neural Netw Learn Syst 28(10):2222–2232MathSciNetCrossRefGoogle Scholar
  25. 25.
    Graves A, Jaitly N, Mohamed A-r (2013) Hybrid speech recognition with deep bidirectional LSTM. In: Proc IEEE ASRU’13, Olomouc, Czech Republic, pp 273–278Google Scholar
  26. 26.
    Ordonez FJ, Roggen D (2016) Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. MDPI Sensors 16(1):115CrossRefGoogle Scholar
  27. 27.
    Do T-H, Yoo M (2016) An in-depth survey of visible light communication based positioning systems. MPDI Sensors 16(5):678CrossRefGoogle Scholar
  28. 28.
    Kingma D, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980
  29. 29.
    He S, Chan S-HG (2016) Wi-fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun Surveys Tuts 18(1):466–490. First QuarterCrossRefGoogle Scholar
  30. 30.
    Win MZ, Shen Y, Dai W (2018) A theoretical foundation of network localization and navigation. Proc IEEE 106(7):1136–1165CrossRefGoogle Scholar
  31. 31.
    Sun Y, Peng M, Zhou Y, Huang Y, Mao S (2018) Application of machine learning in wireless networks: Key techniques and open issues. arXiv:1809.08707
  32. 32.
    Rapinski J, Cellmer S (2016) Analysis of range based indoor positioning techniques for personal communication networks. Springer Mobile Networks and Applications 21(3):539–549CrossRefGoogle Scholar
  33. 33.
    Wang X, Wang X, Mao S (2018) RF Sensing in the Internet of Things: a general deep learning framework. IEEE Commun Mag 56(9):62–67CrossRefGoogle Scholar
  34. 34.
    Wang X, Gao L, Mao S, Pandey S (2015) Deepfi: Deep learning for indoor fingerprinting using channel state information. In: Proc WCNC’15, New Orleans, LA, pp 1666–1671Google Scholar
  35. 35.
    Wang X, Gao L, Mao S (2015) Phasefi: Phase fingerprinting for indoor localization with a deep learning approach. In: Proc GLOBECOM’15, San Diego, CA, pp 1–6Google Scholar
  36. 36.
    Wang X, Gao L, Mao S (2016) CSI Phase fingerprinting for indoor localization with a deep learning approach. IEEE Internet of Things J 3(6):1113–1123CrossRefGoogle Scholar
  37. 37.
    Wang X, Gao L, Mao S (2017) BiLoc: Bi-modality deep learning for indoor localization with 5 GHz commodity Wi-Fi. IEEE Access J 5(1):4209–4220CrossRefGoogle Scholar
  38. 38.
    Xiao C, Yang D, Chen Z, Tan G (2017) 3-D BLE indoor localization based on denoising autoencoder. IEEE Access J 5:12751–12760CrossRefGoogle Scholar
  39. 39.
    Gu F, Khoshelham K, Yu C, Shang J (2018) Accurate step length estimation for pedestrian dead reckoning localization using stacked autoencoders. IEEE Trans Instrum Meas, p 1Google Scholar
  40. 40.
    Khatab ZE, Hajihoseini A, Ghorashi SA (2018) A fingerprint method for indoor localization using autoencoder based deep extreme learning machine. IEEE Sens Lett 2(1):1–4CrossRefGoogle Scholar
  41. 41.
    Abbas M, Elhamshary M, Rizk H, Torki M, Youssef M (2019) WiDeep: WiFi-based accurate and robust indoor localization system using deep learning. In: IEEE PerCom’19, Kyoto, JapanGoogle Scholar
  42. 42.
    Wang X, Wang X, Mao S (2017) CiFi: Deep convolutional neural networks for indoor localization with 5GHz Wi-Fi. In: Proc IEEE ICC 2017, Paris, France, pp 1–6Google Scholar
  43. 43.
    Wang W, Wang X, Mao S Deep convolutional neural networks for indoor localization with CSI images. IEEE Transactions on Network Science and Engineering, in press.
  44. 44.
    Wang X, Wang X, Mao S (2017) ResLoc: Deep residual sharing learning for indoor localization with CSI tensors. In: Proc IEEE PIMRC 2017, Montreal, Canada, pp 1–6Google Scholar
  45. 45.
    Wang X, Yu Z, Mao S (2018) DeepML: Deep LSTM for indoor localization with smartphone magnetic and light sensors. In: Proc IEEE ICC 2017, Kansas City, MO, pp 1–6Google Scholar
  46. 46.
    Sahar A, Han D (2018) An LSTM-based indoor positioning method using Wi-Fi signals. In: Proc ACM international conference on vision, image and signal processing, Las Vegas, NV, p Article No 43Google Scholar
  47. 47.
    Bytelight Technology. [Online] Available:
  48. 48.
    Hu Y, Xiong Y, Huang W, Li X-Y, Yang P, Zhang Y, Mao X (2018) Lightitude: Indoor positioning using uneven light intensity distribution. Proc ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2(2):Artical 67CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceCalifornia State UniversitySacramentoUSA
  2. 2.Department of Electrical and Computer EngineeringAuburn UniversityAuburnUSA

Personalised recommendations