Advertisement

SDSN: Software-defined Space Networking — Architecture and Routing Algorithm

  • Tianjiao XieEmail author
Article
  • 17 Downloads

Abstract

Space networking has captured increasing attentions because of its wide application scenarios. Facing to the technical challenges of space networking including topology alteration, non-realtime condition capture and control, and instable communication and control reliability, this article introduce software-defined networking (SDN) into space networking and proposes software-defined space networking, named SDSN. The architecture and the detailed strategy based routing algorithm are designed. SDSN has three key features: the predeterminate rules, strategy based routing algorithm, and redundant space-ground controlling strategy. These features address the three challenges pointedly. The simulation results confirm the advantages.

Keywords

Space network Satellite network Software-defined network Routing algorithm 

Notes

References

  1. 1.
    Radhakrishnan R, Edmonson WW, Afghah F, Rodriguez-Osorio RM, Pinto F, Burleigh SC (2016) Survey of inter-satellite communication for small satellite systems: Physical layer to network layer view. IEEE Commun Surv Tutorials 18(4):2442–2473. FourthquarterCrossRefGoogle Scholar
  2. 2.
    Chitre P, Yegenoglu F (1999) Next-generation satellite networks: architectures and implementations. IEEE Commun Mag 37(3):30–36CrossRefGoogle Scholar
  3. 3.
    Kreutz D, Ramos FMV, Verssimo PE, Rothenberg CE, Azodolmolky S, Uhlig S (2015) Software-defined networking: a comprehensive survey. Proc IEEE 103(1):14–76CrossRefGoogle Scholar
  4. 4.
    Nunes BAA, Mendonca M, Nguyen X, Obraczka K, Turletti T (2014) A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Commun Surv Tutorials 16(3):1617–1634CrossRefGoogle Scholar
  5. 5.
    Yang M, Li Y, Jin D, Zeng L, Wu X, Vasilakos AV (2015) Software-defined and virtualized future mobile and wireless networks: a survey. Mobile Networks and Applications 20(1):4–18CrossRefGoogle Scholar
  6. 6.
    Haque IT, Abu-Ghazaleh N (2016) Wireless software defined networking: a survey and taxonomy. IEEE Commun Surv Tutorials 18(4):2713–2737. FourthquarterCrossRefGoogle Scholar
  7. 7.
    Niu Y, Li Y, Chen M, Jin D, Chen S (2016) A cross-layer design for a software-defined millimeter-wave mobile broadband system. IEEE Commun Mag 54(2):124–130CrossRefGoogle Scholar
  8. 8.
    Arslan MY, Sundaresan K, Rangarajan S (2015) Software-defined networking in cellular radio access networks: potential and challenges. IEEE Commun Mag 53(1):150–156CrossRefGoogle Scholar
  9. 9.
    Yang M, Li Y, Hu L, Li B, Jin D, Chen S, Yan Z (2015) Cross-layer software-defined 5g network. Mobile Networks and Applications 20(3):400–409CrossRefGoogle Scholar
  10. 10.
    Yang M, Li Y, Li B, Jin D, Chen S (2016) Service-oriented 5g network architecture: an end-to-end software defining approach. Int J Commun Syst 29(10):1645–1657CrossRefGoogle Scholar
  11. 11.
    Yiakoumis Y, Bansal M, Katti S, McKeown N (2014) SDN for dense wifi networks. In: Presented as part of the Open Networking Summit 2014 (ONS 2014), Santa Clara, USENIXGoogle Scholar
  12. 12.
    Schulz-Zander J, Mayer C, Ciobotaru B, Schmid S, Feldmann A (2015) Opensdwn: Programmatic control over home and enterprise wifi. In: Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking Research, SOSR ’15, ACM, New York, pp 16:1–16:12Google Scholar
  13. 13.
    Kalkan K, Zeadally S (2018) Securing internet of things with software defined networking. IEEE Commun Mag 56(9):186–192CrossRefGoogle Scholar
  14. 14.
    Bizanis N, Kuipers FA (2016) Sdn and virtualization solutions for the internet of things: a survey. IEEE Access 4:5591–5606CrossRefGoogle Scholar
  15. 15.
    Ferrus R, Koumaras H, Sallent O, Agapiou G, Rasheed T, Kourtis M-A, Boustie C, Gélard P, Ahmed T (2016) Sdn/nfv-enabled satellite communications networks: Opportunities, scenarios and challenges, vol 18. Special Issue on Radio Access Network Architectures and Resource Management for 5GGoogle Scholar
  16. 16.
    Bertaux L, Medjiah S, Berthou P, Abdellatif S, Hakiri A, Gelard P, Planchou F, Bruyere M (2015) Software defined networking and virtualization for broadband satellite networks. IEEE Commun Mag 53(3):54–60CrossRefGoogle Scholar
  17. 17.
    Li T, Zhou H, Luo H, Xu Q, Ye Y (2016) Using sdn and nfv to implement satellite communication networks. In: 2016 International Conference on Networking and Network Applications (naNA), pp 131–134Google Scholar
  18. 18.
    Bao J, Zhao B, Yu W, Feng Z, Wu C, Gong Z (2014) Opensan: a software-defined satellite network architecture. SIGCOMM Comput Commun Rev 44(4):347–348CrossRefGoogle Scholar
  19. 19.
    Du P, Nazari S, Mena J, Fan R, Gerla M, Gupta R (2016) Multipath tcp in sdn-enabled leo satellite networks. In: MILCOM 2016 - 2016 IEEE Military Communications Conference, pp 354–359Google Scholar
  20. 20.
    Mongelli M, De Cola T, Cello M, Marchese M, Davoli F (2016) Feeder-link outage prediction algorithms for sdn-based high-throughput satellite systems. In: 2016 IEEE International Conference on Communications (ICC), pp 1–6Google Scholar
  21. 21.
    Nazari S, Du P, Gerla M, Hoffmann C, Kim JH, Capone A (2016) Software defined naval network for satellite communications (sdn-sat). In: MILCOM 2016 - 2016 IEEE Military Communications Conference, pp 360–366Google Scholar
  22. 22.
    Gounder VV, Prakash R, Abu-Amara H (April 1999) Routing in leo-based satellite networks. pp 12–13Google Scholar
  23. 23.
    Fischer T, Engel D, Basin D (2008) Topology dynamics and routing for predictable mobile networks. pp 207–217Google Scholar
  24. 24.
    Huang L, Huang W, Liu F, Wang J, Su Y (2016) An optimized snapshot division strategy for satellite network in gnss. IEEE Commun Lett 20(12):2406–2409CrossRefGoogle Scholar
  25. 25.
    Rosenberg C, Mauger R (1997) Qos guarantees for multimedia services on a tdma-based satellite network. IEEE Commun Mag 35(7):56–65CrossRefGoogle Scholar
  26. 26.
    Lu Y, Zhao Y, Sun F (2013) Virtual topology for leo satellite networks based on earth-fixed footprint mode. IEEE Commun Lett 17(2):35–360CrossRefGoogle Scholar
  27. 27.
    Lu F, Sun D, Qin Y, Zhao Y (2016) Complexity of routing in store-and-forward leo satellite networks. IEEE Commun Lett 20(1):89–92CrossRefGoogle Scholar
  28. 28.
    Hashimoto Y (1998) Design of ip-based routing in a leo satellite network. In: HPSR. Proc. Of the 3rd intl workshop on satellite-based information services, ACM, New York, pp 81–88Google Scholar
  29. 29.
    Wu F, Jin Y, Fu J, Luo T, Zhang Z, Hu G (2015) Hop-limited adaptive routing in packet-switched non-geostationary satellite networks. IEICE Trans Commun 98:411–424Google Scholar
  30. 30.
    Zheng Y, Zhao S, Liu Y, Li Y et al (2017) Weighted algebraic connectivity maximization for optical satellite networks. IEEE Access 5:6885–6893CrossRefGoogle Scholar
  31. 31.
    Chen C (2003) A QoS-based routing algorithm in multimedia satellite networks. In: Proceedings of the VTC’03-fall conference, pp 2703–2707Google Scholar
  32. 32.
    Muhammad T, Cola M, Giambene G (2016) Qos support in sgd-based high throughput satellite networks. IEEE Trans Wirel Commun 15(12):8477–8491CrossRefGoogle Scholar
  33. 33.
    Li F, Jin H, Luo S, Yu T, Zhou H (2018) Service: A software defined framework for integrated space-terrestrial satellite communication. IEEE Trans Mob Comput 17(3):703–716CrossRefGoogle Scholar
  34. 34.
    Papapetrou F, Pavlidou E, Karapantazis S (2007) Distributed on-demand routing for leo satellite systems 51:4356–4376Google Scholar
  35. 35.
    Ji P, Zhao D, Wang X, Liu L (2015) A-star algorithm based on-demand routing protocol for hierarchical leo/meo satellite networks. In: 2015 IEEE International Conference on Big Data: Santa Clara, CA, USA, pp 1545–1549Google Scholar
  36. 36.
    Sparka H., Freimann A., Scheuermann B., Schilling K., Kondrateva O., D?bler H (2018) Throughput-optimal joint routing and scheduling for low-earth-orbit satellite networks. In: 2018 14Th annual conference on wireless on-demand network systems and services (WONS), pp 59–66Google Scholar
  37. 37.
    Akyildiz M, Bender I, Ekici E (2002) Mlsr: A novel routing algorithm for multilayered satellite ip networks 10:411–424Google Scholar
  38. 38.
    Tang F, Kuang L et al (2016) An improved multi-path routing algorithm for hybrid leo-meo satellite networks. In: 2016 IEEE Trustcom/bigdataSE/ISPA: Tianjin, China, pp 1101–1105Google Scholar
  39. 39.
    Zhou H, Zhou H et al (2018) Distributed contact plan design for multi-layer satellite-terrestrial network 15:23–34Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronics and InformationNorthwestern Polytechnical UniversityXi’anChina
  2. 2.China Academy of Space Technology (Xi’an)Xi’anPeople’s Republic of China

Personalised recommendations