Advertisement

Deploying Data-intensive Applications with Multiple Services Components on Edge

  • Yishan Chen
  • Shuiguang DengEmail author
  • Hongtao Ma
  • Jianwei Yin
Article
  • 19 Downloads

Abstract

In the information age, the amount of data is huge which shows an exponential growth. In addition, most services of application need to be interdependent with data, cause that they can be executed under the driven data. In fact, such a data-intensive service deployment requires a good coordination among different edge servers. It is not easy to handle such issues while data transmission and load balancing conditions change constantly between edge servers and data-intensive services. Based on the above description, this paper proposes a Data-intensive Service Edge deployment scheme based on Genetic Algorithm (DSEGA). Firstly, a data-intensive edge service composition and an edge server model will be generated based on a graph theory algorithm, then five algorithms of Genetic Algorithm (GA), Simulated Annealing Algorithm (SA), Ant Colony Algorithm (ACO), Optimized Ant Colony Algorithm (ACO_v) and Hill Climbing will be respectively used to obtain an optimal deployment scheme, so that the response time of the data-intensive edge service deployment reaches a minimum under storage constraints and load balancing conditions. The experimental results show that the DSEGA algorithm can get the shortest response time among the service, data components and edge servers.

Keywords

Data-intensive Service deployment Edge servers Response time 

Notes

Acknowledgements

This research was partially supported by the National Key Research and Development Program of China (No.2017YFB 1400601), Key Research and Development Project of Zhejiang Province (No.2015C01027, No.2017C01015), National Science Foundation of China (No.61772461), Natural Science Foundation of Zhejiang Province (No.LR18F020003 and No.LY17F020014)

References

  1. 1.
    Al-Shuwaili A, Simeone O (2017) Energy-efficient resource allocation for mobile edge computing-based augmented reality applications. IEEE Wirel Commun Lett 6(3):398–401CrossRefGoogle Scholar
  2. 2.
    Borden JM, Yin N (1999) System for servicing plurality of queues responsive to queue service policy on a service sequence ordered to provide uniform and minimal queue interservice times. US Patent 5,870,629Google Scholar
  3. 3.
    Burke EK, Bykov Y (2017) The late acceptance hill-climbing heuristic. Eur J Oper Res 258(1):70–78MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Deng S, Huang L, Hu D, Zhao JL, Wu Z (2016) Mobility-enabled service selection for composite services. IEEE Trans Serv Comput 9(3):394–407CrossRefGoogle Scholar
  5. 5.
    Deng S, Huang L, Li Y, Yin J (2014) Deploying data-intensive service composition with a negative selection algorithm. Int J Web Serv Res (IJWSR) 11(1):76–93CrossRefGoogle Scholar
  6. 6.
    Deng S, Huang L, Li Y, Zhou H, Wu Z, Cao X, Kataev MY, Li L (2016) Toward risk reduction for mobile servic7e composition. IEEE Trans Cybern 46(8):1807–1816CrossRefGoogle Scholar
  7. 7.
    Deng S, Huang L, Taheri J, Yin J, Zhou M, Zomaya AY (2017) Mobility-aware service composition in mobile communities. IEEE Trans Syst, Man, Cybern: Syst 47(3):555–568CrossRefGoogle Scholar
  8. 8.
    Deng S, Wu H, Taheri J, Zomaya AY, Wu Z (2016) Cost performance driven service mashup: a developer perspective. IEEE Trans Parallel Distrib Syst 27(8):2234–2247CrossRefGoogle Scholar
  9. 9.
    Deng S, Wu H, Tan W, Xiang Z, Wu Z (2017) Mobile service selection for composition: an energy consumption perspective. IEEE Trans Autom Sci Eng 14(3):1478–1490CrossRefGoogle Scholar
  10. 10.
    Doya C, Chatzievangelou D, Bahamon N, Purser A, De Leo FC, Juniper SK, Thomsen L, Aguzzi J (2017) Seasonal monitoring of deep-sea megabenthos in barkley canyon cold seep by internet operated vehicle (iov), vol 12Google Scholar
  11. 11.
    Gullhav AN, Cordeau JF, Hvattum LM, Nygreen B (2017) Adaptive large neighborhood search heuristics for multi-tier service deployment problems in clouds. Eur J Oper Res 259(3):829–846MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    He K, Fisher A, Wang L, Gember A, Akella A, Ristenpart T (2013) Next stop, the cloud: understanding modern web service deployment in ec2 and azure. In: Proceedings of the 2013 conference on Internet measurement conference. ACM, pp 177–190Google Scholar
  13. 13.
    Hochba DS (1997) Approximation algorithms for np-hard problems. ACM Sigact 28(2):40–52CrossRefGoogle Scholar
  14. 14.
    Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile edge computingła key technology towards 5g. ETSI White Paper 11(11):1–16Google Scholar
  15. 15.
    Huo Y, Zhuang Y, Gu J, Ni S (2015) Elite-guided multi-objective artificial bee colony algorithm. Appl Soft Comput 32:199–210CrossRefGoogle Scholar
  16. 16.
    Liu J, Yang J, Liu H, Tian X, Gao M (2017) An improved ant colony algorithm for robot path planning. Soft Comput 21(19):5829–5839CrossRefGoogle Scholar
  17. 17.
    Lucas-Simarro JL, Moreno-Vozmediano R, Montero RS, Llorente IM (2013) Scheduling strategies for optimal service deployment across multiple clouds. Futur Gener Comput Syst 29(6):1431–1441CrossRefGoogle Scholar
  18. 18.
    Mach P, Becvar Z (2017). Mobile edge computing: a survey on architecture and computation offloading. arXiv:1702.05309
  19. 19.
    Mao Y, Zhang J, Letaief KB (2016) Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE J Sel Areas Commun 34(12):3590–3605CrossRefGoogle Scholar
  20. 20.
    Marinescu DC (2017) Cloud computing: theory and practice. Morgan Kaufmann, San MateoGoogle Scholar
  21. 21.
    Marr B (2012) Key Performance Indicators (KPI): the 75 measures every manager needs to know. Pearson, UKGoogle Scholar
  22. 22.
    Pavithra R, Srinivasan R, Saravanan V (2018) Web service deployment for selecting a right steganography scheme for optimizing both the capacity and the detectable distortion. Int J Recent Innov Trends Comput Commun 6(4):267–277Google Scholar
  23. 23.
    Satyanarayanan M (2017) The emergence of edge computing. Computer 50(1):30–39CrossRefGoogle Scholar
  24. 24.
    Selimi M, Cerdà-Alabern L, Freitag F, Veiga L, Sathiaseelan A, Crowcroft J (2018) A lightweight service placement approach for community network micro-clouds. Journal of Grid Computing:1–21Google Scholar
  25. 25.
    Shotton JDJ, Sharp T, Kohli P, Nowozin RSB, Winn JM, Criminisi A (2017) Memory facilitation using directed acyclic graphs. US Patent App. 15/338,050Google Scholar
  26. 26.
    Sivanandam S, Deepa S (2008) Genetic algorithm optimization problems. In: Introduction to genetic algorithms. Springer, pp 165–209Google Scholar
  27. 27.
    Taleb T, Dutta S, Ksentini A, Iqbal M, Flinck H (2017) Mobile edge computing potential in making cities smarter. IEEE Commun Mag 55(3):38–43CrossRefGoogle Scholar
  28. 28.
    Wang J (2011) Exploiting mobility prediction for dependable service composition in wireless mobile ad hoc networks. IEEE Trans Serv Comput 4(1):44–55CrossRefGoogle Scholar
  29. 29.
    Wei L, Zhang Z, Zhang D, Leung SC (2018) A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints. Eur J Oper Res 265(3):843–859MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Xiong Z, Zhang Y, Niyato D, Wang P, Han Z (2018) When mobile blockchain meets edge computing. IEEE Commun Mag 56(8):33–39CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yishan Chen
    • 1
  • Shuiguang Deng
    • 1
    Email author
  • Hongtao Ma
    • 1
  • Jianwei Yin
    • 1
  1. 1.School of Computer Science and TechnologyZhejiang UniversityHangzhouChina

Personalised recommendations