Advertisement

Security Performance Analysis of Underlay Cognitive Networks with Helpful Jammer Under Interference from Primary Transmitter

  • Khuong Ho-Van
  • Thiem Do-Dac
Article

Abstract

Interference from primary transmitters in underlay cognitive networks is practically neither neglected nor integrated into noise terms although most literature inversely addressed. This paper firstly employs a helpful jammer to secure information transmission of a secondary transmitter. Then, its efficacy through secrecy outage probability under practical considerations consisting of exponentially distributed interference from primary transmitter, peak transmission power limitation, interference power limitation, and Rayleigh fading channels are analytically assessed. Finally, results are provided to illustrate significant security performance improvement thanks to exploiting the jammer while considerable security performance degradation due to interference from primary transmitter.

Keywords

Security performance Primary transmitter Jammer 

Notes

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.04-2017.01

References

  1. 1.
    Panwar N, Sharma S, Singh AK (2016) A survey on 5G: the next generation of mobile communication. Elsevier Physical Communication 18(2):64–84CrossRefGoogle Scholar
  2. 2.
    Tavana M, Rahmati A, Shah-Mansouri V, Maham B (2017) Cooperative sensing with joint energy and correlation detection in cognitive radio networks. IEEE Commun Lett 21(1):132–135CrossRefGoogle Scholar
  3. 3.
    Ho-Van K (2016) Exact outage probability analysis of proactive relay selection in cognitive radio networks with MRC receivers. IEEE/KICS Journal of Communications and Networks 18(3):288–298CrossRefGoogle Scholar
  4. 4.
    Darsena D, Gelli G, Verde F (2017) An opportunistic spectrum access scheme for multicarrier cognitive sensor networks. IEEE Sensors J 17(8):2596–2606CrossRefGoogle Scholar
  5. 5.
    Liu Y, Chen H, Wang L (2017) Physical layer security for next generation wireless networks: theories, technologies, and challenges. IEEE Commun Surv Tutorials 19(1):347–376. First QuarterCrossRefGoogle Scholar
  6. 6.
    Sharma R, Rawat D (2015) Advances on security threats and countermeasures for cognitive radio networks: a survey. IEEE Commun Surv Tutorials 17(2):1023–1043CrossRefGoogle Scholar
  7. 7.
    Gan Z, Li-Chia C, Kai-Kit W (2011) Optimal cooperative jamming to enhance physical layer security using relays. IEEE Trans Sig Processing 59(3):1317–1322MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zhihui S, Yi Q, Song C (2013) On physical layer security for cognitive radio networks. IEEE Netw 27:28–33CrossRefGoogle Scholar
  9. 9.
    Yulong Z, Jia Z, Liuqing Y, Ying-chang L, Yu-dong Y (2015) Securing physical-layer communications for cognitive radio networks. IEEE Commun Mag 53:48–54Google Scholar
  10. 10.
    Li J, Feng Z, Feng Z, Zhang P (2015) A survey of security issues in cognitive radio networks. China Communications 12:132– 150CrossRefGoogle Scholar
  11. 11.
    Zheng TX, Wang HM (2016) Optimal power allocation for artificial noise under imperfect CSI against spatially random eavesdroppers. IEEE Trans Veh Tech 65(10):8812–8817CrossRefGoogle Scholar
  12. 12.
    Hu J, Cai Y, Yang N, Zhou X, Yang W (2017) Artificial-noise-aided secure transmission scheme with limited training and feedback overhead. IEEE Trans Wire Commun 16(1):193–205CrossRefGoogle Scholar
  13. 13.
    Wang C, Wang HM (2014) On the secrecy throughput maximization for MISO cognitive radio network in slow fading channels. IEEE Trans Inf Forensics Secur 9(11):1814–1827CrossRefGoogle Scholar
  14. 14.
    Ho-Van K (2015) Outage analysis in cooperative cognitive networks with opportunistic relay selection under imperfect channel information. Int J Electron Commun 69(11):1700–1708CrossRefGoogle Scholar
  15. 15.
    Wang D, Ren P, Du Q, Sun L, Wang Y (2016) Cooperative relaying and jamming for primary secure communication in cognitive two-way networks. In: Proceedings of IEEE VTC. Nanjing, China, pp 1–5Google Scholar
  16. 16.
    Fang B, Qian Z, Zhong W, Shao W (2015) AN-Aided secrecy precoding for SWIPT in cognitive MIMO broadcast channels. IEEE Commun Lett 19(9):1632–1635CrossRefGoogle Scholar
  17. 17.
    Nguyen VD, Duong TQ, Dobre OA, Shin OS (2016) Joint information and jamming beamforming for secrecy rate maximization in cognitive radio networks. IEEE Trans Inf Forensics Secur 11(11):2609–2623CrossRefGoogle Scholar
  18. 18.
    Fang B, Qian Z, Shao W, Zhong W (2016) Precoding and artificial noise design for cognitive MIMOME wiretap channels. IEEE Trans Veh Tech 65(8):6753–6758CrossRefGoogle Scholar
  19. 19.
    Wu Y, Chen X, Chen X (2015) Secure beamforming for cognitive radio networks with artificial noise. In: Proceedings of IEEE WCSP. Nanjing, China, pp 1–5Google Scholar
  20. 20.
    Hu X, Zhang X, Huang H, Li Y (2016) Secure transmission via jamming in cognitive radio networks with possion spatially distributed eavesdroppers. In: Proceedings of IEEE PIMRC. Valencia, Spain, pp 1–6Google Scholar
  21. 21.
    Cai Y, Xu X, Yang W (2016) Secure transmission in the random cognitive radio networks with secrecy guard zone and artificial noise. IET Commun. 10(15):1904–1913CrossRefGoogle Scholar
  22. 22.
    Li Z, Jing T, Cheng X, Huo Y, Zhou W, Chen D (2015) Cooperative jamming for secure communications in MIMO cooperative cgnitive radio networks. In: Proceedings of IEEE ICC. London, UK, pp 7609–7614Google Scholar
  23. 23.
    Liu W, Guo L, Kang T, Zhang J, Lin J (2015) Secure cognitive radio system with cooperative secondary networks. In: Proceedings IEEE ICT. Sydney, Australia, pp 6–10Google Scholar
  24. 24.
    He T, Chen H, Liu Q (2013) Qos-based beamforming with cooperative jamming in cognitive radio networks. In: Proceedings of ICCCAS. Chengdu, China, pp 42–45Google Scholar
  25. 25.
    Liu W, Sarkar MZI, Ratnarajah T (2014) On the security of cognitive radio networks: cooperative jamming with relay selection. In: Proceedings of EUCNC. Bologna, Italy, pp 1–5Google Scholar
  26. 26.
    Liu W, Sarkar MZI, Ratnarajah T, Du H (2017) Securing cognitive radio with a combined approach of beamforming and cooperative jamming. IET Commun 11(1):1–9CrossRefGoogle Scholar
  27. 27.
    Zou Y (2017) Physical-layer security for spectrum sharing systems. IEEE Trans Wire Commun 16(2):1319–1329CrossRefGoogle Scholar
  28. 28.
    Liu Y, Wang L, Duy TT, Elkashlan M, Duong TQ (2015) Relay selection for security enhancement in cognitive relay networks. IEEE Wire Commun Lett 4(1):46–49CrossRefGoogle Scholar
  29. 29.
    Chakraborty P, Prakriya S (2017) Secrecy performance of an idle receiver assisted underlay secondary network. IEEE Trans Veh Tech 66(10):9555–9560CrossRefGoogle Scholar
  30. 30.
    Ho-Van K, Sofotasios PC, Freear S (2014) Underlay cooperative cognitive networks with imperfect Nakagami-m fading channel information and strict transmit power constraint: interference statistics and outage probability analysis. IEEE/KICS Journal of Communications and Networks 16(1):10–17CrossRefGoogle Scholar
  31. 31.
    Biglieri E, Proakis J, Shamai S (1998) Fading channels: information-theoretic and communications aspects. IEEE Trans Inf Theory 44(6):2619–2692MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wyner AD (1975) The wire-tap channel. Bell Syst Tech Journ 54(8):1355–1387MathSciNetCrossRefGoogle Scholar
  33. 33.
    Gradshteyn IS, Ryzhik IM (2000) Table of integrals, series and products, 6th edn. Academic, San DiegozbMATHGoogle Scholar
  34. 34.
    Zou Y, Wang X, Shen W (2013) Physical-layer security with multiuser scheduling in cognitive radio networks. IEEE Trans Commun 61(12):5103–5113CrossRefGoogle Scholar
  35. 35.
    Ahmed N, Khojastepour M, Aazhang B (2004) Outage minimization and optimal power control for the fading relay channel. In: Proceedings of IEEE information theory workshop. San Antonio, pp 458–462Google Scholar
  36. 36.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, CambridgezbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ho Chi Minh City University of Technology, VNU-HCMHo Chi Minh CityVietnam
  2. 2.Thu Dau Mot UniversityThu Dau Mot CityVietnam

Personalised recommendations