Advertisement

Data-Driven Power Allocation for Medium Access Control in LTE-U Coexisting with Wi-Fi

  • Rongfei FanEmail author
  • Song Jin
  • Qi Gu
  • Gongpu Wang
Article
  • 44 Downloads

Abstract

In this paper, power allocation problem is investigated for an LTE-U (long-term evolution unlicensed) system, in which a cellular system will transmit data on the unlicensed spectrum occupied by Wi-Fi system. One base station and multiple mobile users are considered for both uplink scenario and downlink scenario. To access the base station in uplink scenario or to transmit information to multiple mobile users in downlink scenario, orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) are studied respectively. The transmit power of the base station or multiple mobile users over multiple channels in the unlicensed spectrum are optimized to maximize the system throughput while imposing a probabilistic constraint on the interference to Wi-Fi receiver only with a number of samples of interference channel’s gain. Although being in non-closed-form, the formulated probabilistic constraint is transformed to be two types of closed-form constraints. Then the originally formulated optimization problems fall into convex optimization problems. In addition, it is proved that the OMA mode can achieve the same performance with the NOMA mode for uplink scenario, and one simple solution is developed under OMA mode for downlink scenario. Numerical results are demonstrated to show the performance of our proposed methods.

Keywords

LTE-U Power allocation Medium access control Data-driven 

References

  1. 1.
    He H, Shan H, Huang A, Cai LX, Quek TQS (2017) Proportional fairness-based resource allocation for LTE-u coexisting with Wi-Fi. IEEE Access 5:4720–4731CrossRefGoogle Scholar
  2. 2.
    An J, Yang K, Wu J, Ye N, Guo S, Liao Z (2017) Achieving sustainable ultra-dense heterogeneous networks for 5G. IEEE Commun Mag 55(12):84–90CrossRefGoogle Scholar
  3. 3.
    Huawei (2015) Huawei and NTT DOCOMO successfully demonstrate LAA and Wi-Fi co-existence with small cell. Huawei. http://pr.huawei.com/en/news/hw-445833-nttdocomo.htm
  4. 4.
    Rupasinghe N, Güvenç I (2015) Reinforcement learning for licensedassisted access of LTE in the unlicensed spectrum. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), pp 1279–1284Google Scholar
  5. 5.
    Ratasuk R, Mangalvedhe N, Ghosh A (2014) LTE In unlicensed spectrum using licensed-assisted access. In: Proceedings of IEEE Global Communications Conference (Globecom), pp 746–751Google Scholar
  6. 6.
    Lien S-Y, Lee J, Liang Y-C (2016) Random access or scheduling: Optimum LTE licensed-assisted access to unlicensed spectrum. IEEE Commun Lett 20(3):590–593CrossRefGoogle Scholar
  7. 7.
    Cierny M, Wang H, Wichman R, Ding Z, Wijting C (2013) On number of almost blank subframes in heterogeneous cellular networks. IEEE Trans Wirel Commun 12(10):5061–5073CrossRefGoogle Scholar
  8. 8.
    Almeida E et al (2013) Enabling LTE/wifi coexistence by LTE blank subframe allocation. In: Proceedings of IEEE International Conference on Communications (ICC), pp 5083–5088Google Scholar
  9. 9.
    Zhang H, Chu X, Guo W, Wang S (2015) Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Commun Mag 53(3):158–164CrossRefGoogle Scholar
  10. 10.
    Kim D, Le LB, Hossain E (2008) Joint rate and power allocation for cognitive radios in dynamic spectrum access environment. IEEE Trans Wirel Commun 7(12):5517–5527Google Scholar
  11. 11.
    Zhou Z, Jia Y, Chen F, Tsang K, Liu G, Han Z (2017) Unlicensed spectrum sharing: From coexistence to convergence. IEEE Wirel Commun 24(5):94–101CrossRefGoogle Scholar
  12. 12.
    Zhang R (2009) On peak versus average interference power constraints for protecting primary users in cognitive radio networks. IEEE Trans Wirele Commun 8(4):2112–2120CrossRefGoogle Scholar
  13. 13.
    Scutari G, Palomar DP, Pang J. -S., Facchinei F (2009) Flexible design of cognitive radio wireless systems: From game theory to variational inequality theory. IEEE Signal Process Mag 26(5): 107–123CrossRefGoogle Scholar
  14. 14.
    Gong S, Wang P, Liu Y, Zhuang W (2013) Robust power control with distribution uncertainty in cognitive radio networks. IEEE J Sel Areas Commun 31(11):2397–2408CrossRefGoogle Scholar
  15. 15.
    Parsaeefard S, Sharafat AR (2012) Robust worst-case interference control in underlay cognitive radio networks. IEEE Trans Veh Technol 61(8):3731–3745CrossRefGoogle Scholar
  16. 16.
    Mokari N, Parsaeefard S, Azmi P, Saeedi H, Hossain E (2016) Robust ergodic uplink resource allocation in underlay OFDMA cognitive radio networks. IEEE Trans Mob Comput 15(2):419–431CrossRefGoogle Scholar
  17. 17.
    Fan R, Chen W, An J, Gao F, Wang G (2016) Robust power and bandwidth allocation in cognitive radio system with uncertain distributional interference channels. IEEE Trans Wirel Commun 15(10):7160–7173CrossRefGoogle Scholar
  18. 18.
    Fan R, Cui J, Chen W, An J, Wang G (2018) Resource allocation in cognitive underlay system with uncertain interference channel’s statistics. IEEE Commun Lett 22(5):1022–1025CrossRefGoogle Scholar
  19. 19.
    Ding Z, et al. (2017) A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE J Sel Areas Commun 35(10):2181–2195CrossRefGoogle Scholar
  20. 20.
    Shawe-Taylor J, Cristianini N (2003) Estimating the moments of a random vector with applications. http://eprints.soton.ac.uk/260372/1/EstimatingTheMomentsOfARandomVectorWithApplications.pdf
  21. 21.
    Calafiore G, El Ghaoui L (2006) On distributionally robust chance- constrained linear programs. J Optim Theory Appl 130(1):1–22MathSciNetCrossRefGoogle Scholar
  22. 22.
    Stephens M (1974) EDF Statistics for goodness of fit and some comparisons. J Am Stat Assoc 69(347):730–737CrossRefGoogle Scholar
  23. 23.
    Thas O (2010) Comparing distributions. Springer, BerlinCrossRefGoogle Scholar
  24. 24.
    Bertsimas D, GuptaEmail V, Kallus N (2018) Data-driven robust optimization. Math Program 167 (2):235–292MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nemirovski A, Shapiro A (2006) Convex approximations of chance constrained programs. SIAM J Optim 17(4):969–996MathSciNetCrossRefGoogle Scholar
  26. 26.
    Boyd SP, Vandenberghe L (2004) Convex optimization. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  27. 27.
    Lin D, Tang Y, Yao Y, Vasilakos AV (2017) User-priority based power control over the D2D assisted Internet of vehicles for mobile health. IEEE Internet Things J 4(3):824–831CrossRefGoogle Scholar
  28. 28.
    Fei Z, Li B, Yang S, Xing C, Chen H, Hanzo L (2017) A survey of multi-objective optimization in wireless sensor networks: metrics, algorithms and open problems. IEEE Commun Surv Tuts 19(1):550–586CrossRefGoogle Scholar
  29. 29.
    Yang Z, Xu W, Pan C, Pan Y, Chen M (2017) On the optimality of power allocation for NOMA downlinks with individual QoS constraints. IEEE Commun Lett 21(7):1649–1652CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information and ElectronicsBeijing Institute of TechnologyBeijingChina
  2. 2.School of Computer and Information TechnologyBeijing Jiaotong UniversityBeijingChina

Personalised recommendations