Rateless Coded Multi-User Downlink Transmission in Cloud Radio Access Network

  • Yu Zhang
  • Yefan Zhang
  • Hong PengEmail author
  • Lingjie Xie
  • Limin Meng


In this paper, we propose a rateless coded transmission scheme for the multi-user downlink of Cloud Radio Access Network (C-RAN). In the network, multiple users are served by a cluster of remote radio heads (RRH), which are connected to the building baseband units (BBU) pool through the fronthaul links with limited capacity. In the proposed transmission scheme, the precoder and compressor at the BBU pool, and the decoding algorithm at the users are designed. To further improve the performance of the proposed transmission scheme, we investigate the joint optimization of the precoder and the degree profiles of the rateless codes implemented at the BBU pool to maximize the sum throughput of the network. Explicitly, the optimization problem is formulated according to the extrinsic information transfer (EXIT) function analysis on the decoding process at the users. We give simulation results on the BER and throughput performance achieved by the proposed rateless coded transmission scheme, which verify the effectiveness of the joint optimization on the degree profiles and the precoder.


Cloud radio access networks Rateless code Precoding EXIT analysis 



This work was supported by the Zhejiang Provincial Natural Science Foundation of China under Grant LY17F010014.


  1. 1.
    Feng Z, Qiu C, Feng Z, Wei Z, Li W, Zhang P (2015) An effective approach to 5G: wireless network virtualization. IEEE Commun Mag 53(12):53–59CrossRefGoogle Scholar
  2. 2.
    Andrews J (2013) Seven ways that Hetnet are a cellular paradigm shift. IEEE Commun Mag 51(3):136–144CrossRefGoogle Scholar
  3. 3.
    Lin Y, Shao L, Zhu Z, Wang Q, Sabhikhi RK (2010) Wireless network cloud: architecture and system requirements. IBM J Res Dev 54(1):1–12CrossRefGoogle Scholar
  4. 4.
    Marsch P, Raaf B, Szufarska A, Mogensen P, Guan H, Farber M, Redana S, Pedersen K, Kolding T (2012) Future mobile communication networks: challenges in the design and operation. IEEE Veh Technol Mag 7(1):16–23CrossRefGoogle Scholar
  5. 5.
    Checko A, Christiansen HL, Yan Y, Scolari L, Kardaras G, Berger MS, Dittmann L (2015) Cloud RAN for mobile networks—a technology overview. IEEE Comm Surveys & Tutorials 17(1):405–426CrossRefGoogle Scholar
  6. 6.
    Simeone O, Kang J, Kang J et al (2016) Cloud radio access networks: uplink channel estimation and downlink precoding. arXiv pre-printGoogle Scholar
  7. 7.
    Dai B, Yu W (2014) Sparse beamforming and user-centric clustering for downlink cloud radio access network. IEEE Access, pp 1326–1339Google Scholar
  8. 8.
    Shi Y, Zhang J et al (2014) Group sparse beamforming for green cloud-RAN. IEEE Trans Wirel Commun 13(5):2809–2823CrossRefGoogle Scholar
  9. 9.
    Li N, Xing C, Fei Z et al (2014) Low information-exchange and robust distributed MMSE precoding algorithm for C-RAN. In: Proc. IEEE Vehicular Technology Conf., pp 1–5Google Scholar
  10. 10.
    Lee W, Simeone O, Kang J, Shamai S (2016) Multivariate fronthaul quantization for downlink C-RAN. IEEE Trans Signal Process 64(19):5025–5037MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kang J, Simeone O, Kang J, Shamai S (2016) Fronthaul compression and precoding design for C-RANs over ergodic fading channels. IEEE Trans Veh Technol 65(7):5022–5032CrossRefGoogle Scholar
  12. 12.
    Park SH, Simeone O, Sahin O, Shamai S (2013) Joint precoding and multivariate backhaul compression for the downlink of cloud radio access networks. IEEE Trans Signal Process 61(22):5646–5658MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhong C, Suraweera H et al (2014) Wireless information and power transfer with full duplex relaying. IEEE Trans Commun 62(10):3447–3461CrossRefGoogle Scholar
  14. 14.
    Zhu G, Zhong C, Suraweera H, Karagiannids G, Zhang Z, Tsiftsis T (2015) Wireless information and power transfer in relay systems with multiple antennas and interference. IEEE Trans Commun 63(4):1400–1418CrossRefGoogle Scholar
  15. 15.
    Dai B, Yu W (2016) Energy efficiency of downlink transmission strategies for cloud radio access networks. IEEE J Sel Areas Comm 34(4):1037–1050CrossRefGoogle Scholar
  16. 16.
    Wu Y, Qian L, Mao H, Yang Y, Shen X (2018) Optimal power allocation and scheduling for non-orthogonal multiple access relay-assisted networks. IEEE Trans Mob Comput 17:2591–2606. CrossRefGoogle Scholar
  17. 17.
    Wu Y, Chen J, Qian L, Huang J, Shen X (2017) Energy-aware cooperative traffic offloading via device-to-device cooperations: an analytical approach. IEEE Trans Mob Comput 16(1):97–114CrossRefGoogle Scholar
  18. 18.
    Lu W, Gong Y, Liu X, Wu J, Peng H (2018) Collaborative energy and information transfer in green wireless sensor networks for smart cities. IEEE Trans Industrial Informatics 14(4):1585–1593CrossRefGoogle Scholar
  19. 19.
    Chen Y, Yu G, Zhang Z, Chen H, Qiu P (2008) On cognitive radio networks with opportunistic power control strategies in fading channels. IEEE Trans Wirel Commun 7(7):2752–2761CrossRefGoogle Scholar
  20. 20.
    Zhang Z, Shi J, Chen H, Guizani M, Qiu P (2008) A cooperation strategy based on Nash bargaining solution in cooperative relay networks. IEEE Trans Veh Technol 57(4):2570–2577CrossRefGoogle Scholar
  21. 21.
    Qian LP, Zhang YJ, Huang H, Wu Y (2013) Demand response management via real-time electricity price control in smart grids. IEEE Journal on Selected areas in Communications 31(7):1268–1280CrossRefGoogle Scholar
  22. 22.
    Qian LP, Wu Y, Zhou H, Shen XS (2017) Joint uplink base station association and power control for small-cell networks with non-orthogonal multiple access. IEEE Trans Wirel Commun 16(9):5567–5582CrossRefGoogle Scholar
  23. 23.
    Wang G et al (2011) GPU accelerated scalable parallel decoding of LDPC codes. Proc. IEEE the 45th Asilomar conference on signals, systems and computersGoogle Scholar
  24. 24.
    Wübben D et al (2014) Decoder implementation for cloud based architectures. Proc. European Conference on Networks and CommunGoogle Scholar
  25. 25.
    Luby M, Watson M, Gasiba T, Stockhammer T, Xu W (2006) Raptor codes for reliable download delivery in wireless broadcast systems. In: Proc IEEE Consumer Communications and Networking ConferenceGoogle Scholar
  26. 26.
    Zhang Y, Zhang ZY (2013) Joint network-channel coding with rateless code over multiple access relay system. IEEE Trans Wirel Commun 12(1):320–332CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Zhang ZY (2013) Joint network-channel coding with rateless in two-way relay system. IEEE Trans Wirel Commun 12(7):3158–3169CrossRefGoogle Scholar
  28. 28.
    Chen XM, Zhang ZY, Chen SL, Wang C (2012) Adaptive mode selection for multiuser MIMO downlink employing rateless codes with QoS provisioning. IEEE Trans Wirel Commun 11(2):790–799CrossRefGoogle Scholar
  29. 29.
    Chen X, Yuan C (2013) Efficient resource allocation in rateless coded MU-MIMO cognitive radio network with QoS provisioning and limited feedback. IEEE Trans Veh Technol 62(1):395–399CrossRefGoogle Scholar
  30. 30.
    Karakayali K, Yates R, Foschini G, Valenzuela R (2007) Optimum zero-forcing beamforming with per-antenna power constraints. In: Proc. IEEE Int. Symp. Inform. Theory, France, Jun 2007, pp 101–105Google Scholar
  31. 31.
    Venkiah A, Poulliat C, Declercq D (2007) Jointly decoded raptor codes: analysis and design for the BiAWGN channel. In: Proc. IEEE Int. Symp. Inform. Theory, pp 421–425Google Scholar
  32. 32.
    Etesami O, Shokrollahi A (2006) Raptor codes on binary memoryless symmetric channels. IEEE Trans Inf Theory 52(5):2033–2051MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yu Zhang
    • 1
  • Yefan Zhang
    • 1
  • Hong Peng
    • 1
    Email author
  • Lingjie Xie
    • 1
  • Limin Meng
    • 1
  1. 1.The College of Information EngineeringZhejiang University of TechnologyHangzhouChina

Personalised recommendations