Advertisement

Mobile Networks and Applications

, Volume 24, Issue 2, pp 578–595 | Cite as

Tracking Area Update and Paging in 5G Networks: a Survey of Problems and Solutions

  • Alaa A. R. AlsaeedyEmail author
  • Edwin K. P. Chong
Article
  • 460 Downloads

Abstract

The 5th Generation wireless systems (5G) is expected to accommodate exceptional services beyond current cellular systems. To achieve this goal, however, ongoing studies are still developing new schemes to provide seamless connections to the ever increasing density of high-mobility User Equipments (UEs). That means that the network needs to track all UEs while moving throughout the coverage area for the purpose of data-packet delivery. The two Mobility Management (MM) procedures that are essential to localize a specific UE and deliver data packets to that UE are known as Tracking Area Update (TAU) and Paging, which are burdensome to the system because of very high-volume traffic. Therefore, MM will become a crucial problem for 5G requirements; how to support real-time applications and provide close-to-zero latency for life-critical systems? This paper addresses a variety of problems that should be faced and discusses various solution schemes in terms of implementation complexity, latency, and computation overhead for both the TAU and Paging. Because 5G systems will work in conjunction with current Long Term Evolution (LTE) systems and the latter is retuned to use as a base design for future 5G, our discussion starts from current LTE solutions towards 5G MM improvements. In this context, this paper emphasizes a new key design for 5G and explains the challenges that impact both the network performance and UE experience (e.g., power saving). Next, we critically discuss the applicability of current LTE solution schemes (in terms of TAU and Paging costs) and evaluate them for 5G use cases. To the best of our knowledge, this paper is the first study that emphasizes and gives a critique on using of different types of UE mobility models (based on the given studies), which are used to analyze the network performance that interacts with the UE movements. In this context, some 5G improvement schemes are discussed.

Keywords

Mobility management Mobility models Tracking area update Paging LTE 5G NG-RAN NG-RRC RNA RNAU 

Notes

Acknowledgments

The first author was fully supported by Iraqi Ministry of Higher Education and Scientific Research through a scholarship grant no. 4650/11/16/2014.

References

  1. 1.
    3GPP TR 23.799 V14.0.0: Study on architecture for next generation system (release 14) (2016). http://www.3gpp.org
  2. 2.
    3GPP TS 22.261 V16.1.0: Service requirements for the 5G system; Stage 1 (release 16) (2017). http://www.3gpp.org
  3. 3.
    3GPP TS 23.401 V14.4.0: General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access (release 14) (2017). https://portal.3gpp.org
  4. 4.
    3GPP TS 23.501 V15.0.0: System architecture for the 5G system; Stage 2 (release 15) (2017). http://www.3gpp.org
  5. 5.
    3GPP TS 38.300 V15.0.0: NR; NR and NG-RAN overall description; Stage 2 (release 15) (2017). http://www.3gpp.org
  6. 6.
    Agyapong P, Iwamura M, Staehle D, Kiess W, Benjebbour A (2014) Design considerations for a 5G network architecture. IEEE Commun Mag 52(11):65–75.  https://doi.org/10.1109/MCOM.2014.6957145 CrossRefGoogle Scholar
  7. 7.
    Akpakwu GA, Silva BJ, Hancke GP, Abu-Mahfouz AM (2018) A survey on 5G networks for the internet of things: Communication technologies and challenges. IEEE Access 6:3619–3647.  https://doi.org/10.1109/ACCESS.2017.2779844 CrossRefGoogle Scholar
  8. 8.
    Alcatel-Lucent (2013) The impact of small cells on MME signaling: Methods to reduce and optimize MME core signalling caused by small cells. Tech Rep. http://www.tmcnet.com/tmc/whitepapers
  9. 9.
    Bagaa M, Taleb T, Ksentini A (2016) Efficient tracking area management framework for 5G networks. IEEE Trans Wirel Commun 15(6):4117–4131.  https://doi.org/10.1109/TWC.2016.2535217 CrossRefGoogle Scholar
  10. 10.
    Bar-Noy A, Kessler I, Sidi M (1995) Mobile users: To update or not to update? Ph.D thesis.  https://doi.org/10.1007/BF01202540
  11. 11.
    Bhattacharya A, Das SK (1999) Lezi-update: an information-theoretic approach to track mobile users in PCS networks. In: Proc. 5th annu. ACM/IEEE int. conf. mob. comput. netw. - mobicom ’99. ACM Press, New York, pp 1–12, DOI  https://doi.org/10.1145/313451.313457
  12. 12.
    Chan J, Zhou S, Seneviratne A (1998) A QoS adaptive mobility prediction scheme for wireless networks. In: IEEE GLOBECOM 1998 (Cat. NO. 98CH36250), vol 3. IEEE, pp 1414–1419.  https://doi.org/10.1109/GLOCOM.1998.776573
  13. 13.
    Chen L, Liu HL, Fan Z, Xie S, Goodman ED (2017) Modeling the tracking area planning problem using an evolutionary multi-objective algorithm. IEEE Comput Intell Mag 12(1):29–41.  https://doi.org/10.1109/MCI.2016.2627669 CrossRefGoogle Scholar
  14. 14.
    Cheng KCK, Yap RHC (2008) Search space reduction for constraint optimization problems. In: Princ Pract Constraint Program. Springer, Berlin, pp 635–639.  https://doi.org/10.1007/978-3-540-85958-1_56
  15. 15.
    Clayirci E, Akyildiz I (2002) User mobility pattern scheme for location update and paging in wireless systems. IEEE Trans Mob Comput 1(3):236–247.  https://doi.org/10.1109/TMC.2002.1081758 CrossRefGoogle Scholar
  16. 16.
    Da Silva IL, Mildh G, Saily M, Hailu S (2016) A novel state model for 5G radio access networks. In: 2016 IEEE int. conf. commun. work. IEEE, pp 632–637.  https://doi.org/10.1109/ICCW.2016.7503858
  17. 17.
    Deng T, Wang X, Fan P, Li K (2016) Modeling and performance analysis of a tracking-area-list-based location management scheme in LTE networks. IEEE Trans Veh Technol 65(8):6417–6431.  https://doi.org/10.1109/TVT.2015.2473704 CrossRefGoogle Scholar
  18. 18.
    Ericsson Ericsson mobility report. Tech Rep. https://www.ericsson.com/en/mobility-report
  19. 19.
    Fan P, Zhao J, I CL (2016) 5G high mobility wireless communications: Challenges and solutions. China Commun 13(Supplement2):1–13.  https://doi.org/10.1109/CC.2016.7833456 CrossRefGoogle Scholar
  20. 20.
    Fu HL, Lin P, Yue H, Huang GM, Lee CP (2014) Group mobility management for large-scale machine-to-machine mobile networking. IEEE Trans Veh Technol 63(3):1296–1305.  https://doi.org/10.1109/TVT.2013.2284596 CrossRefGoogle Scholar
  21. 21.
    Ge X, Ye J, Yang Y, Li Q (2016) User mobility evaluation for 5G small cell networks based on individual mobility model. IEEE J Sel Areas Commun 34(3):528–541.  https://doi.org/10.1109/JSAC.2016.2525439 CrossRefGoogle Scholar
  22. 22.
    Grigoreva E, Xu J, Kellerer W (2017) Reducing mobility management signaling for automotive users in LTE advanced. In: 2017 IEEE int. symp. local metrop. Area networks. IEEE, pp 1–6.  https://doi.org/10.1109/LANMAN.2017.7972167
  23. 23.
    Hailu S, Saily M (2017) Hybrid paging and location tracking scheme for inactive 5G UEs. In: 2017 eur. conf. networks commun. IEEE, pp 1–6.  https://doi.org/10.1109/EuCNC.2017.7980730
  24. 24.
    Jeon S, Figueiredo S, Aguiar RL, Choo H (2017) Distributed mobility management for the future mobile networks: a comprehensive analysis of key design options. IEEE Access 5:11423–11436.  https://doi.org/10.1109/ACCESS.2017.2713240 CrossRefGoogle Scholar
  25. 25.
    Kim J, Kim D, Choi S (2017) 3GPP SA2 architecture and functions for 5G mobile communication system. ICT Express 3(1):1–8.  https://doi.org/10.1016/J.ICTE.2017.03.007. https://www.sciencedirect.com CrossRefGoogle Scholar
  26. 26.
    Kominami D, Iwai T, Shimonishi H, Murata M (2017) A control method for autonomous mobility management systems toward 5G mobile networks. In: 2017 IEEE int. conf. commun. work. (ICC work. IEEE, pp 498–503.  https://doi.org/10.1109/ICCW.2017.7962707
  27. 27.
    Kyamakya K, Jobmann K (2005) Location management in cellular networks: Classification of the most important paradigms, realistic simulation framework, and relative performance analysis. IEEE Trans Veh Technol 54(2):687–708.  https://doi.org/10.1109/TVT.2004.842459 CrossRefGoogle Scholar
  28. 28.
    Liou RH, Lin YB, Tsai SC (2013) An investigation on LTE mobility management. IEEE Trans Mob Comput 12(1):166–176.  https://doi.org/10.1109/TMC.2011.255 CrossRefGoogle Scholar
  29. 29.
    Meng N, Zhang H, Lin B (2016) User-centric mobility management based on virtual cell in ultra-dense networks 2016 IEEE/CIC int. conf. commun. China. IEEE, pp 1–6.  https://doi.org/10.1109/ICCChina.2016.7636899
  30. 30.
    Nawaz M (2013) Exploiting tracking area list concept in LTE networks. Ph.D thesisGoogle Scholar
  31. 31.
    Nguyen LD (2018) Resource allocation for energy efficiency in 5G wireless networks. EAI Endorsed Trans Ind Networks Intell Syst 5(14):154832.  https://doi.org/10.4108/eai.27-6-2018.154832 Google Scholar
  32. 32.
    Nguyen LD, Tuan HD, Duong TQ (2016) Energy-efficient signalling in QoS constrained heterogeneous networks. IEEE Access 4:7958–7966.  https://doi.org/10.1109/ACCESS.2016.2626363 CrossRefGoogle Scholar
  33. 33.
    Nguyen NP, Duong TQ, Ngo HQ, Hadzi-Velkov Z, Shu L (2016) Secure 5G wireless communications: a joint relay selection and wireless power transfer approach. IEEE Access 4:3349–3359.  https://doi.org/10.1109/ACCESS.2016.2582719 CrossRefGoogle Scholar
  34. 34.
    Nowoswiat D (2013) Managing LTE core network signaling traffic. Tech Rep, Nokia. https://insight.nokia.com/managing-lte-core-network-signaling-traffic
  35. 35.
    Olsson M, Sultana S, Rommer S, Frid L, Mulligan C (2009) SAE and the evolved packet core: Driving the mobile broadband revolution, 1st edn. Elsevier, New YorkGoogle Scholar
  36. 36.
    Osseiran A, Boccardi F, Braun V, Kusume K, Marsch P, Maternia M, Queseth O, Schellmann M, Schotten H, Taoka H, Tullberg H, Uusitalo MA, Timus B, Fallgren M (2014) Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun Mag 52(5):26–35.  https://doi.org/10.1109/MCOM.2014.6815890 CrossRefGoogle Scholar
  37. 37.
    Panwar N, Sharma S, Singh AK (2016) A survey on 5G: The next generation of mobile communication. Phys Commun 18:64–84.  https://doi.org/10.1016/j.phycom.2015.10.006 CrossRefGoogle Scholar
  38. 38.
    Parija SR, Nath NP, Sahu P, Singh S (2015) Dynamic profile based paging in mobile communication. In: 2015 int. conf. microwave, opt. commun. eng.IEEE, pp 342–345.  https://doi.org/10.1109/ICMOCE.2015.7489762
  39. 39.
    Razavi SM (2011) Tracking area planning in cellular networks - optimization and performance evaluation. Thesis, Linkoping University. http://liu.diva-portal.org/smash/get/diva2:402919/FULLTEXT01.pdf
  40. 40.
    Roy A, Misra A, Das SK (2007) Location update versus paging trade-off in cellular networks: an approach based on vector quantization. IEEE Trans Mob Comput 6(12):1426–1440.  https://doi.org/10.1109/TMC.2007.1059 CrossRefGoogle Scholar
  41. 41.
    Roy A, Shin J, Saxena N (2012) Entropy-based location management in long-term evolution cellular systems. IET Commun 6(2):138.  https://doi.org/10.1049/iet-com.2011.0289 MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Rumney M (2014) Taking 5G from vision to reality. https://blog.3g4g.co.uk/2014/07/taking-5g-from-vision-to-reality.html
  43. 43.
    Säily M (2016) Deliverable D6.1 draft asynchronous control functions and overall control plane design. METIS-II/D6.1. http://www.5g-ppp.eu/
  44. 44.
    Samaan N, Karmouch A (2005) A mobility prediction architecture based on contextual knowledge and spatial conceptual maps. IEEE Trans Mob Comput 4(6):537–551.  https://doi.org/10.1109/TMC.2005.74 CrossRefGoogle Scholar
  45. 45.
    Scourias J (1997) Dynamic location management and activity-based mobility modelling for cellular networks. Thesis, University of Waterloo (Canada)Google Scholar
  46. 46.
    Song C, Qu Z, Blumm N, Barabȧsi AL (2010) Limits of predictability in human mobility. Science 327(5968):1018–21.  https://doi.org/10.1126/science.1177170 MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Thompson T (2018) AT&T announces first 3 U.S. cities to receive 5G wireless. iDROPNEWS. https://www.idropnews.com/news/fast-tech/att-announces-first-3-u-s-cities-receive-5g-wireless/63923/
  48. 48.
    Vo NS, Duong TQ, Guizani M, Kortun A (2018) 5G optimized caching and downlink resource sharing for smart cities. IEEE Access 6:31457–31468.  https://doi.org/10.1109/ACCESS.2018.2839669 CrossRefGoogle Scholar
  49. 49.
    Vo NS, Duong TQ, Tuan HD, Kortun A (2018) Optimal video streaming in dense 5G networks with D2D communications. IEEE Access 6:209–223.  https://doi.org/10.1109/ACCESS.2017.2761978 CrossRefGoogle Scholar
  50. 50.
    Xiao Y, Chen H, Guizani M (2006) Performance evaluation of pipeline paging under paging delay constraint for wireless systems. IEEE Trans Mob Comput 5(1):64–76.  https://doi.org/10.1109/TMC.2006.14 CrossRefGoogle Scholar
  51. 51.
    Yuen C, Elkashlan M, Qian Y, Duong TQ, Shu L, Schmidt F (2015) Energy harvesting communications: Part 1 [Guest Editorial]. IEEE Commun Mag 53(4):68–69.  https://doi.org/10.1109/MCOM.2015.7081077 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electrical and Computer EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations