Advertisement

Mobile Networks and Applications

, Volume 24, Issue 2, pp 564–577 | Cite as

Analytical and Experimental Performance Evaluation of Antenna Misalignment in Ka-band Wireless Links

  • Sebastián RodríguezEmail author
  • Antonio Jurado-Navas
  • Juan José Vegas Olmos
  • Idelfonso Tafur Monroy
Article
  • 31 Downloads

Abstract

In this paper, we propose a model for the effect of misalignment of antennas due to mechanical vibrations and experimentally validate its accuracy in a Ka-band (26-40 GHz) transmission link. Our approach provides a valuable tool that is analytically tractable and physically simple to implement. To highlight the applicability of the model, a setup based on a centralized radio access network (C-RAN) transmitting and receiving wireless signals in the Ka-band is implemented. With this tool, the robustness of 5G networks to antenna misalignments can be evaluated in terms of bit-error rate. We show how the presence of misalignment in this type of systems induces an error floor observable in the bit-error-rate performance. A simple static decision threshold is implemented taking into account the amount of displacement and, directly related to that factor, on the expected number of fades per unit time. The closed-form expressions derived through this paper are in perfect agreement with the experimental measurements taken from the implemented system.

Keywords

Millimeter wave propagation Directive antennas Modeling Mobile communication 

Notes

Acknowledgements

The authors would like to thank the Marie Sklodowska-Curie Innovative Training Network FiWiN5G supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 642355 and the Andalusian Knowledge Agency and the European Union under Marie-Curie COFUND Andalucía Talent Hub program under Grant 291780 for their financial support.

References

  1. 1.
    Dahlman E, Mildh G, Parkvall S, Peisa J, Sachs J, Selén Y, Sköld J (2014) 5G wireless access: requirements and realization. IEEE Commun Mag 52(12):42–47CrossRefGoogle Scholar
  2. 2.
    Chih-Lin I, Rowell C, Han S, Xu Z, Li G, Pan Z (2014) Toward green and soft: a 5G perspective. IEEE Commun Mag 52(2):66– 73CrossRefGoogle Scholar
  3. 3.
    Rommel S, Rodriguez S, Chorchos L, Grakhova EP, Sultanov AK, Turkiewicz JP, Vegas Olmos JJ, Tafur Monroy I (2016) 225m outdoor W-band radio-over-fiber link using an optical SFP+ module. In: Optical Fiber Communication Conference, p Th2A.16Google Scholar
  4. 4.
    Lebedev A, Pang X, Vegas Olmos JJ, Beltrán M, Llorente R, Forchhammer S, Tafur Monroy I (2013) Feasibility study and experimental verification of simplified fiber-supported 60-GHz picocell mobile backhaul links. IEEE Photonics J 5(4):7200913CrossRefGoogle Scholar
  5. 5.
    Feliciano da Costa I, Rodriguez S, Puerta R, Vegas Olmos JJ, Sodré Jr AC, da Silva LG, Spadoti D, Tafur Monroy I (2016) Photonic down-conversion and optically controlled reconfigurable antennas in mm-waves wireless networks. In: Optical Fiber Communication Conference, p W3K.3Google Scholar
  6. 6.
    Prince K, Monroy I (2011) Tafur Multi-band radio over fiber system with all-optical halfwave rectification, transmission and frequency down-conversion. Opt Fiber Technol 17(4):310–314CrossRefGoogle Scholar
  7. 7.
    Rakia T, Gebali F, Yang HC, Alouini MS (2017) Cross layer analysis of P2MP hybrid FSO/RF network. IEEE/OSA J Opt Commun Networking 9(3):234–243CrossRefGoogle Scholar
  8. 8.
    Bag B, Das A, Ansari IS, Prokeš A, Bose C, Chandra A (2018) Performance analysis of hybrid FSO systems using FSO/RF-FSO link adaptation. IEEE Photonics J 10(3):1–17CrossRefGoogle Scholar
  9. 9.
    Trinh PV, Cong Thang T, Pham AT (2017) Mixed mmWave RF/FSO relaying systems over generalized fading channels with pointing errors. IEEE Photonics J 9(1):1–14Google Scholar
  10. 10.
    Hur S, Kim T, Love DJ, Krogmeier JV, Thomas TA, Ghosh A (2013) Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun 61(10):4391–4403CrossRefGoogle Scholar
  11. 11.
    Lei H, Luo H, Park KH, Ren Z, Pan G, Alouini MS (2018) Secrecy outage analysis of mixed RF-FSO systems with channel imperfection. IEEE Photonics J 10(3):1–13CrossRefGoogle Scholar
  12. 12.
    Lawrence NP, Ng BWH, Hansen HJ, Abbott D (2017) 5G terrestrial networks: mobility and coverage—solution in three dimensions. IEEE Access 5(1):8064–8093CrossRefGoogle Scholar
  13. 13.
    General Dynamics SATCOM Technologies (2011) Static and Dynamic Wind Load Test Report 1.2m Ka-Band 3122 SeriesAntenna, Test Report-537Google Scholar
  14. 14.
    Knott P, Loecker C, Algermissen S, Sekora R (2013) Vibration control and structure integration of antennas on aircraft - Research in NATO SET-131. In 7th european conference on antennas and propagation (EuCAP)Google Scholar
  15. 15.
    Shiozumi T, Ming A, Kida T, Kanamori C, Kobayashi Y, Satoh M (2007) Vibration suppression of ship-mounted antennas using a nonlinear passive vibration isolator. In: IEEE Int. Conf. on Integration TechnologyGoogle Scholar
  16. 16.
    Sendi C, Ayoubi MA (2018) Robust fuzzy tracking control of flexible spacecraft via a T–S fuzzy model. IEEE Trans Aerosp Electron Syst 54(1):170–179CrossRefGoogle Scholar
  17. 17.
    Zhang Q, Zeng Z (2016) Design and implementation of UGC-oriented news gathering system server-side for emergencies. In: IEEE international conference on computer communication and theinternet (ICCCI)Google Scholar
  18. 18.
    Kazemipour A, Hudlička M., Dickhoff R, Salhi M, Kleine-Ostmann T, Schrader T (2014) The horn antenna as Gaussian source in the mm-wave domain. Journal of Infrared. Millimeter, and Terahertz Waves 35 (9):720–731CrossRefGoogle Scholar
  19. 19.
    Farid AA, Hranilovic S (2007) Outage capacity optimization for free-space optical links with pointing errors. J Lightwave Technol 25(7):1702–1710CrossRefGoogle Scholar
  20. 20.
    Simiu E, Scanlan R (1996) Wind effects on structures, 3rd edn. Wiley, New YorkGoogle Scholar
  21. 21.
    Piersol A, Paez T (2009) Shock and vibration handbook, 6th edn. McGraw Hill, New YorkGoogle Scholar
  22. 22.
    Davenport A (1961) The application of statistical concepts to the wind loading of structures. ICE Proc 19 (4):449—472Google Scholar
  23. 23.
    Alexandropoulos GC (2017) Position aided beam alignment for millimeter wave backhaul systems with large phased arrays. In: IEEE 7th international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)Google Scholar
  24. 24.
    Silver S (1949) Microwave antenna theory and design. McGraw-Hill, New YorkGoogle Scholar
  25. 25.
    Murphy J, McCabe M, Withington S (1997) Gaussian beam mode analysis of the coupling of power between horn antennas. Journal of Infrared Millimeter, and Terahertz Waves 18(2):501–518CrossRefGoogle Scholar
  26. 26.
    Aubry C, Bitter D (1975) Radiation pattern of a corrugated conical horn in terms of Laguerre-Gaussian functions. IEEE Electron Lett 11(7):154–156CrossRefGoogle Scholar
  27. 27.
    Pasternack-Industry http://www.pasternack.com/ (2018).[Online; accessed 1-May-2018]
  28. 28.
    Young CY, Andrews L, Ishimaru A (1998) Time-of-arrival fluctuations of a space–time Gaussian pulse in weak optical turbulence: an analytic solution. Appl Opt 37(33):7655–7660CrossRefGoogle Scholar
  29. 29.
    Jurado-Navas A, Garrido-Balsells JM, Castillo-Vázquez M, Puerta-Notario A (2009) Numerical model for the temporal broadening of optical pulses propagating through weak atmospheric turbulence. Opt Lett 34(23):3662–3664CrossRefGoogle Scholar
  30. 30.
    Saleh B (1991) Fundamentals of photonics. Wiley, New YorkCrossRefGoogle Scholar
  31. 31.
    Goldsmith P (1998) Quasioptical systems. Gaussian beam, quasioptical propagation and applications. IEEE PressGoogle Scholar
  32. 32.
    Wen G (2015) Foundations for radio frequency engineering. World Scientific, SingaporeCrossRefGoogle Scholar
  33. 33.
    Arnon S (2003) Effects of atmospheric turbulence and building sway on optical wireless-communication systems. Opt Lett 28(2):129CrossRefGoogle Scholar
  34. 34.
    Papoulis A (2002) Probability: Random variables, and stochastic processes. McGraw-Hill, New YorkzbMATHGoogle Scholar
  35. 35.
    Jurado-Navas A, Garrido-Balsells JM, Paris JF, Castillo-Vázquez M, Puerta-Notario A (2012) Impact of pointing errors on the performance of generalized atmospheric optical channels. Opt Express 20(11):12550–12562CrossRefzbMATHGoogle Scholar
  36. 36.
    Andrews L, Phillips R (2005) Laser beam propagation throughrandom media. SPIE, BellinghamCrossRefGoogle Scholar
  37. 37.
    Wolfram http://functions.wolfram.com/ (2016). [Online;accessed 1-May-2018]
  38. 38.
    Abramowitz M, Stegun I (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th edn. Dover, USAzbMATHGoogle Scholar
  39. 39.
    Jurado-Navas A, Garrido-Balsells JM, Castillo-Vázquez M, Puerta-Notario A (2012) Closed-form expressions for the lower-bound performance of variable weight multiple pulse-position modulation optical links through turbulent atmospheric channels. IET Commun 6(4):390–397MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Rice SO (1944) Mathematical analysis of random noise. Bell Syst Tech J 23(3):282–332MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Rice SO (1945) Mathematical analysis of random noise. Bell Syst Tech J 24(1):46–156MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Durgin GD, Rappaport TS (2000) Theory of multipath shape factors for small-scale fading wireless channels. IEEE Trans Antennas Propag 48(5):682–693CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department Photonics EngineeringTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.Communications Engineering DepartmentUniversity of MálagaMálagaSpain
  3. 3.Department of Electrical EngineeringEindhoven University of TechnologyEindhovenNetherlands
  4. 4.Mellanox TechnologiesRoskildeDenmark

Personalised recommendations