Advertisement

Mobile Networks and Applications

, Volume 24, Issue 2, pp 464–479 | Cite as

A Physical Layer Network Coding Based Modify-and-Forward with Opportunistic Secure Cooperative Transmission Protocol

  • Quoc-Tuan VienEmail author
  • Tuan Anh Le
  • Huan X. Nguyen
  • Tho Le-Ngoc
Article
  • 29 Downloads

Abstract

This paper investigates a new secure relaying scheme, namely physical layer network coding based modify-and-forward (PMF), in which a relay node linearly combines the decoded data sent by a source node with an encrypted key before conveying the mixed data to a destination node. We first derive the general expression for the generalized secrecy outage probability (GSOP) of the PMF scheme and then use it to analyse the GSOP performance of various relaying and direct transmission strategies. The GSOP performance comparison indicates that these transmission strategies offer different advantages depending on the channel conditions and target secrecy rates, and relaying is not always desirable in terms of secrecy. Subsequently, we develop an opportunistic secure transmission protocol for cooperative wireless relay networks and formulate an optimisation problem to determine secrecy rate thresholds (SRTs) to dynamically select the optimal transmission strategy for achieving the lowest GSOP. The conditions for the existence of the SRTs are derived for various channel scenarios.

Keywords

Wireless relay networks Physical layer network coding Decode-and-forward Modify-and-forward Cooperative jamming 

References

  1. 1.
    Poor HV, Schaefer RF (2017) Wireless physical layer security. Proc Natl Acad Sci 114(1):19–26CrossRefGoogle Scholar
  2. 2.
    Bassily R, Ekrem E, He X, Tekin E, Xie J, Bloch M, Ulukus S, Yener A (2013) Cooperative security at the physical layer: A summary of recent advances. IEEE Signal Process Mag 30(5):16–28CrossRefGoogle Scholar
  3. 3.
    Fan L, Lei X, Duong TQ, Elkashlan M, Karagiannidis GK (2014) Secure multiuser communications in multiple amplify-and-forward relay networks. IEEE Trans Commun 62(9):3299–3310CrossRefGoogle Scholar
  4. 4.
    Rodriguez LJ, Tran NH, Duong TQ, Le-Ngoc T, Elkashlan M, Shetty S (2015) Physical layer security in wireless cooperative relay networks: State of the art and beyond. IEEE Commun Mag 53(12):32–39CrossRefGoogle Scholar
  5. 5.
    Fan L, Lei X, Yang N, Duong TQ, Karagiannidis GK (2016) Secure multiple amplify-and-forward relaying with cochannel interference,”. IEEE J Sel Topics Signal Process 10(8):1494–1505CrossRefGoogle Scholar
  6. 6.
    Nasir AA, Tuan HD, Duong TQ, Poor HV (2017) Secure and energy-efficient beamforming for simultaneous information and energy transfer. IEEE Trans Wireless Commun 16(11):7523– 7537CrossRefGoogle Scholar
  7. 7.
    Sendonaris A, Erkip E, Aazhang B (2003) User cooperation diversity - Part I. System description. IEEE Trans Commun 51(11):1927–1938CrossRefGoogle Scholar
  8. 8.
    Laneman J, Tse D, Wornell G (2004) Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans Inf Theory 50(12):3062–3080MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Shannon C (1949) Communication theory of secrecy systems. Bell Syst Tech J 28(4):656–715MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wyner A (1975) The wire-tap channel. Bell Syst Tech J 54(8):1355–1387MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Vilela J, Bloch M, Barros J, McLaughlin S (2011) Wireless secrecy regions with friendly jamming. IEEE Trans Inf Forensics Security 6(2):256–266CrossRefGoogle Scholar
  12. 12.
    Krikidis I, Thompson J, Mclaughlin S (2009) Relay selection for secure cooperative networks with jamming. IEEE Trans Wireless Commun 8(10):5003–5011CrossRefGoogle Scholar
  13. 13.
    Liu Y, Li J, Petropulu AP (2013) Destination assisted cooperative jamming for wireless physical-layer security. IEEE Trans Inf Forensics Security 8(4):682–694CrossRefGoogle Scholar
  14. 14.
    Tekin E, Yener A (2008) The general gaussian multiple-access and two-way wiretap channels: Achievable rates and cooperative jamming. IEEE Trans Inf Theory 54(6):2735–2751MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Tekin E (2008) The Gaussian multiple access wire-tap channel. IEEE Trans Inf Theory 54(12):5747–5755MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Liu Y, Petropulu AP, Poor HV (2011) Joint decode-and-forward and jamming for wireless physical layer security with destination assistance. In: Proc ASILOMAR 2011. Pacific Grove, USA, pp 109–113Google Scholar
  17. 17.
    Lai L, El Gamal H (2008) The relay-eavesdropper channel: Cooperation for secrecy. IEEE Trans Inf Theory 54(9):4005–4019MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bassily R, Ulukus S (2013) Deaf cooperation and relay selection strategies for secure communication in multiple relay networks. IEEE Trans Signal Process 61(6):1544–1554MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ahlswede R, Cai N, Li S-Y, Yeung R (2000) Network information flow. IEEE Trans Inf Theory 46(4):1204–1216MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Koetter R, Medard M (2003) An algebraic approach to network coding. IEEE/ACM Trans Netw 11 (5):782–795CrossRefGoogle Scholar
  21. 21.
    Zhang S, Liew SC, Lam PP (2006) Hot topic: Physical-layer network coding. In: Proc ACM MobiCom’06, Los Angeles, CA, USA, pp 358–365Google Scholar
  22. 22.
    Vien Q -T, Nguyen HX, Stewart BG, Choi J, Tu W (2015) On the energy-delay tradeoff and relay positioning of wireless butterfly networks. IEEE Trans Veh Technol 64(1):159–172CrossRefGoogle Scholar
  23. 23.
    Vien Q-T, Stewart BG, Tianfield H, Nguyen HX (2013) Cooperative retransmission for wireless regenerative multirelay networks. IEEE Trans Veh Technol 62(2):735–747CrossRefGoogle Scholar
  24. 24.
    Vien Q-T, Nguyen HX, Choi J, Stewart BG, Tianfield H (2012) Network coding-based block acknowledgement scheme for wireless regenerative relay networks. IET Commun 6(16):2593–2601MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Vien Q-T, Tran L-N, Hong E-K (2011) Network coding-based retransmission for relay aided multisource multicast networks. EURASIP J Wireless Commun Netw 2011(643920):10Google Scholar
  26. 26.
    Cui T, Ho T, Kliewer J (2013) On secure network coding with nonuniform or restricted wiretap sets. IEEE Trans Inf Theory 59(1):166–176MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Cai N, Yeung R (2011) Secure network coding on a wiretap network. IEEE Trans Inf Theory 57(1):424–435MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Gabry F, Thobaben R, Skoglund M (2011) Outage performances for amplify-and-forward, decode-and-forward and cooperative jamming strategies for the wiretap channel. In: Proc IEEE WCNC’11, Cancun, Mexico, pp 1328–1333Google Scholar
  29. 29.
    Bassily R, Ulukus S (2012) Secure communication in multiple relay networks through decode-and-forward strategies. J Commun and Netw 14(4):352–363CrossRefGoogle Scholar
  30. 30.
    Kim SW (2014) Modify-and-forward for securing cooperative relay communications. In: International zurich seminar on communications (IZS), Zurich, Switzerland, pp 136–139Google Scholar
  31. 31.
    Vien Q-T, Le TA, Nguyen HX, Phan H (2016) A secure network coding based modify-and-forward scheme for cooperative wireless relay networks. In: Proc IEEE VTC 2016-Spring, Nanjing, China, pp 1–5Google Scholar
  32. 32.
    Vien Q-T, Le TA, Duong TQ (2017) Opportunistic secure transmission for wireless relay networks with modify-and-forward protocol. In: Proc IEEE ICC, 2017, Paris, France, pp 1–6Google Scholar
  33. 33.
    Zhang J, Marshall A, Woods R, Duong TQ (2017) Design of an OFDM physical layer encryption scheme. IEEE Trans Veh Technol 66(3):2114–2127CrossRefGoogle Scholar
  34. 34.
    He B, Zhou X, Swindlehurst AL (2016) On secrecy metrics for physical layer security over quasi-static fading channels. IEEE Trans Wireless Commun 15(10):6913–6924CrossRefGoogle Scholar
  35. 35.
    Baldi M, Chiaraluce F, Laurenti N, Tomasin S, Renna F (2014) Secrecy transmission on parallel channels: Theoretical limits and performance of practical codes. IEEE Trans Inf Forensics Security 9(11):1765–1779CrossRefGoogle Scholar
  36. 36.
    Barros J, Rodrigues M (2006) Secrecy capacity of wireless channels. In: Proc IEEE ISIT’06, Seattle, WA, USA, pp 356–360Google Scholar
  37. 37.
    Zhang S, Fan L, Peng M, Poor HV (2016) Near-optimal modulo-and-forward scheme for the untrusted relay channel. IEEE Trans Inf Theory 62(5):2545–2556MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Smith G (2011) Quantifying information flow using min-entropy. In: Proc QEST, 2011 Aachen, Germany, pp 159–167Google Scholar
  39. 39.
    Simon MK, Alouini M-S (2005) Digital communication over fading channels, 2nd edn. Wiley, New YorkGoogle Scholar
  40. 40.
    Gradshteyn IS, Ryzhik IM (2007) Table of integrals, series, and products, Academic Press, CambridgeGoogle Scholar
  41. 41.
    Papoulis A (2002) Probability, random variables, and stochastic processes, 4th edn. Mc-Graw Hill, New YorkzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Science and TechnologyMiddlesex UniversityLondonUK
  2. 2.Department of Electrical and Computer EngineeringMcGill UniversityMontrealCanada

Personalised recommendations