Advertisement

Mobile Networks and Applications

, Volume 24, Issue 2, pp 532–555 | Cite as

Performance Analysis of the Content Dissemination Mechanism with Proactive Content Fetching and Full-Duplex D2D Communication: an Evolutionary Perspective

  • Hua Qu
  • Gongye RenEmail author
  • Jihong Zhao
  • Youwei Shi
  • Zhenjie Tan
Article
  • 107 Downloads

Abstract

Device-to-device (D2D) communication has been regarded as a promising technique for content dissemination in the fifth generation wireless network. To improve the efficiency of content dissemination, in this paper, we propose a content dissemination mechanism with proactive content fetching (PCF) and full-duplex (FD) D2D communication, referred to as PCF-FD mechanism. This mechanism is characterized by the proactive content requests of partial users that don’t request contents originally. FD communication is utilized to establish more D2D links and increase the area spectral efficiency (ASE). Based on stochastic geometry, we derive the recursive formula of content caching probability from the evolutionary perspective. In addition, the expressions of successful offloading probability (SOP), ASE and average energy consumption are also obtained. Computer experiments show that the analytical results match well with simulation results and our scheme outperforms the conventional scheme without PCF and FD communication by 45% in terms of SOP in a scenario with small user density and light load.

Keywords

Content dissemination Cache-enabled D2D networks Proactive content fetching Full-duplex communication Offloading Stochastic geometry 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant 61531013 and National Science and Technology Major Project under Grant 2018ZX03001016.

References

  1. 1.
    Andrews JG, Buzzi S, Choi W, et al (2014) What will 5G be? IEEE J Selected Areas Commun 32(6):1065–1082.  https://doi.org/10.1109/JSAC.2014.2328098 CrossRefGoogle Scholar
  2. 2.
    Golrezaei N, Molisch AF, Dimakis AG, Caire G (2013) Femtocaching and device-to-device collaboration: a new architecture for wireless video distribution. IEEE Commun Mag 51(4):142–149.  https://doi.org/10.1109/MCOM.2013.6495773 CrossRefGoogle Scholar
  3. 3.
    Baştug E, Bennis M, Debbah M (2014) Living on the edge: the role of proactive caching in 5G wireless networks. IEEE Commun Mag 52(8):82–89.  https://doi.org/10.1109/MCOM.2014.6871674 CrossRefGoogle Scholar
  4. 4.
    Wang X, Chen M, Taleb T, et al (2014) Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun Mag 52(2):131–139.  https://doi.org/10.1109/MCOM.2014.6736753 CrossRefGoogle Scholar
  5. 5.
    Liu D, Chen B, Yang C, Molisch AF (2016) Caching at the wireless edge: design aspects, challenges, and future directions. IEEE Commun Mag 54(9):22–28.  https://doi.org/10.1109/MCOM.2016.7565183 CrossRefGoogle Scholar
  6. 6.
    Li L, Zhao G, Blum RS (2018) A survey of caching techniques in cellular networks: research issues and challenges in content placement and delivery strategies. IEEE Communications Surveys & Tutorials.  https://doi.org/10.1109/COMST.2018.2820021
  7. 7.
    Wu D, Zhou L, Cai Y, Qian Y (2018) Collaborative caching and matching for D2D content sharing. IEEE Wirel Commun 25(3):43–49.  https://doi.org/10.1109/MWC.2018.1700325 CrossRefGoogle Scholar
  8. 8.
    Feng L, Zhao P, Zhou F, et al. (2018) Resource allocation for 5G D2D multicast content sharing in social-aware cellular networks. IEEE Commun Mag 56(3):112–118.  https://doi.org/10.1109/MCOM.2018.1700667 CrossRefGoogle Scholar
  9. 9.
    Asadi A, Wang Q, Mancuso V (2014) A survey on device-to-device communication in cellular networks. IEEE Commun Surv Tutor 16(4):1801–1819.  https://doi.org/10.1109/COMST.2014.2319555 CrossRefGoogle Scholar
  10. 10.
    Wang X, Sheng Z, Yang S, Leung VCM (2016) Tag-assisted social-aware opportunistic device-to-device sharing for traffic offloading in mobile social networks. IEEE Wirel Commun 23(4):60–67.  https://doi.org/10.1109/MWC.2016.7553027 CrossRefGoogle Scholar
  11. 11.
    Bai B, Wang L, Han Z, et al. (2016) Caching based socially-aware D2D communications in wireless content delivery networks: a hypergraph framework. IEEE Wirel Commun 23(4):74–81.  https://doi.org/10.1109/MWC.2016.7553029 CrossRefGoogle Scholar
  12. 12.
    Hu J, Yang L -L, Yang K, Hanzo L (2016) Socially aware integrated centralized infrastructure and opportunistic networking: a powerful content dissemination catalyst. IEEE Commun Mag 54(8):84–91.  https://doi.org/10.1109/MCOM.2016.7537181 CrossRefGoogle Scholar
  13. 13.
    Machado K, Boukerche A, Cerqueira E, Loureiro AAF (2017) A socially-aware in-network caching framework for the next generation of wireless networks. IEEE Commun Mag 55(12):38–43.  https://doi.org/10.1109/MCOM.2017.1700244 CrossRefGoogle Scholar
  14. 14.
    Luan Z, Qu H, Zhao J, Chen B (2016) Robust digital non-linear self-interference cancellation in full duplex radios with maximum correntropy criterion. China Commun 13(9):53–59.  https://doi.org/10.1109/CC.2016.7582296 CrossRefGoogle Scholar
  15. 15.
    Ji M, Caire G, Molisch AF (2016) Wireless device-to-device caching networks: basic principles and system performance. IEEE Jon Selected Areas Commun 34(1):176–189.  https://doi.org/10.1109/JSAC.2015.2452672 CrossRefGoogle Scholar
  16. 16.
    Elayoubi SE, Masucci AM, Roberts J, Sayrac B (2017) Optimal D2D content delivery for cellular network offloading. Mob Netw Appl 22(6):1033–1044.  https://doi.org/10.1007/s11036-017-0821-1 CrossRefGoogle Scholar
  17. 17.
    Chen B, Yang C, Molisch AF (2017) Cache-enabled device-to-device communications: offloading gain and energy cost. IEEE Trans Wirel Commun 16(7):4519–4536.  https://doi.org/10.1109/TWC.2017.2699631 CrossRefGoogle Scholar
  18. 18.
    Chen Z, Pappas N, Kountouris M (2017) Probabilistic caching in wireless D2D networks: cache hit optimal versus throughput optimal. IEEE Commun Lett 21(3):584–587.  https://doi.org/10.1109/LCOMM.2016.2628032 CrossRefGoogle Scholar
  19. 19.
    Chen B, Yang C, Xiong Z (2017) Optimal caching and scheduling for cache-enabled D2D communications. IEEE Commun Lett 21(5):1155–1158.  https://doi.org/10.1109/LCOMM.2017.2652440 CrossRefGoogle Scholar
  20. 20.
    Malak D, Al-Shalash M, Andrews JG (2016) Optimizing content caching to maximize the density of successful receptions in device-to-device networking. IEEE Trans Commun 64(10):4365–4380.  https://doi.org/10.1109/TCOMM.2016.2600571 Google Scholar
  21. 21.
    Afshang M, Dhillon HS, Chong PHJ (2016) Fundamentals of cluster-centric content placement in cache-enabled device-to-device networks. IEEE Trans Commun 64(6):2511–2526.  https://doi.org/10.1109/TCOMM.2016.2554547 CrossRefGoogle Scholar
  22. 22.
    Giatsoglou N, Ntontin K, Kartsakli E, et al (2017) D2D-aware device caching in mmWave-cellular networks. IEEE J Selected Areas Commun 35(9):2025–2037.  https://doi.org/10.1109/JSAC.2017.2720818 CrossRefGoogle Scholar
  23. 23.
    Sciancalepore V, Giustiniano D, Banchs A, Hossmann-Picu A (2016) Offloading cellular traffic through opportunistic communications: analysis and optimization. IEEE J Selected Areas Commun 34(1):122–137.  https://doi.org/10.1109/JSAC.2015.2452472 CrossRefGoogle Scholar
  24. 24.
    Wang S, Wang X, Huang J, et al (2016) The potential of mobile opportunistic networks for data disseminations. IEEE Trans Veh Technol 65(2):912–922.  https://doi.org/10.1109/TVT.2015.2401605 CrossRefGoogle Scholar
  25. 25.
    Wang S, Wang X, Cheng X, et al. (2017) Fundamental analysis on data dissemination in mobile opportunistic networks with Lévy mobility. IEEE Trans Veh Technol 66(5):4173–4187.  https://doi.org/10.1109/TVT.2016.2597969 Google Scholar
  26. 26.
    Li Y, Kaleem Z, Chang K (2016) Interference-aware resource-sharing scheme for multiple D2D group communications underlaying cellular networks. Wirel Pers Commun 90(2):749–768.  https://doi.org/10.1007/s11277-016-3203-2 CrossRefGoogle Scholar
  27. 27.
    Kaleem Z, Li Y, Chang K (2016) Public safety users’ priority-based energy and time-efficient device discovery scheme with contention resolution for ProSe in third generation partnership project long-term evolution-advanced systems. IET Commun 10(15):1873–1883.  https://doi.org/10.1049/iet-com.2016.0029 CrossRefGoogle Scholar
  28. 28.
    Vo N -S, Duong TQ, Tuan HD, Kortun A (2018) Optimal video streaming in dense 5G networks with D2D communications. IEEE Access 6:209–223.  https://doi.org/10.1109/ACCESS.2017.2761978 CrossRefGoogle Scholar
  29. 29.
    Yin C, Nguyen HT, Kundu C, et al (2018) Secure energy harvesting relay networks with unreliable backhaul connections. IEEE Access 6:12074–12084.  https://doi.org/10.1109/ACCESS.2018.2794507 CrossRefGoogle Scholar
  30. 30.
    Sexton C, Kaminski NJ, Marquez-Barja JM et al (2017) 5G: adaptable networks enabled by versatile radio access technologies. IEEE Commun Surv Tutor 19(2):688–720.  https://doi.org/10.1109/COMST.2017.2652495 CrossRefGoogle Scholar
  31. 31.
    Tam HHM, Tuan HD, Nasir AA, et al. (2017) MIMO energy harvesting in full-duplex multi-user networks. IEEE Trans Wirel Commun 16(5):3282–3297.  https://doi.org/10.1109/TWC.2017.2679055 CrossRefGoogle Scholar
  32. 32.
    Nguyen V -D, Duong TQ, Tuan HD, et al. (2017) Spectral and energy efficiencies in full-duplex wireless information and power transfer. IEEE Trans Commun 65(5):2220–2233.  https://doi.org/10.1109/TCOMM.2017.2665488 CrossRefGoogle Scholar
  33. 33.
    Naslcheraghi M, Ghorashi SA, Shikh-Bahaei M (2017) Performance analysis of inband FD-D2D communications with imperfect SI cancellation for wireless video distribution. In: 2017 8th international conference on the network of the future (NOF), pp 176-181.  https://doi.org/10.1109/NOF.2017.8251246
  34. 34.
    Ahlehagh H, Dey S (2014) Video-aware scheduling and caching in the radio access network. IEEE/ACM Trans Netw 22(5):1444–1462.  https://doi.org/10.1109/TNET.2013.2294111 CrossRefGoogle Scholar
  35. 35.
    Yang C, Yao Y, Chen Z, Xia B (2016) Analysis on cache-enabled wireless heterogeneous networks. IEEE Trans Wirel Commun 15(1):131–145.  https://doi.org/10.1109/TWC.2015.2468220 CrossRefGoogle Scholar
  36. 36.
    Blaszczyszyn B, Giovanidis A (2015) Optimal geographic caching in cellular networks. In: Proceedings of IEEE international conference on communications (ICC), pp 3358–3363.  https://doi.org/10.1109/ICC.2015.7248843
  37. 37.
    Cui Y, Jiang D (2017) Analysis and optimization of caching and multicasting in large-scale cache-enabled heterogeneous wireless networks. IEEE Trans Wirel Commun 16(1):250–264.  https://doi.org/10.1109/TWC.2016.2622236 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Chen Y, Ding M, Li J, et al. (2017) Probabilistic small-cell caching: performance analysis and optimization. IEEE Trans Veh Technol 66(5):4341–4354.  https://doi.org/10.1109/TVT.2016.2606765 Google Scholar
  39. 39.
    Liu D, Yang C (2017) Caching policy toward maximal success probability and area spectral efficiency of cache-enabled HetNets. IEEE Trans Commun 65(6):2699–2714.  https://doi.org/10.1109/TCOMM.2017.2680447 CrossRefGoogle Scholar
  40. 40.
    Vu TX, Chatzinotas S, Ottersten B, Duong TQ (2018) Energy minimization for cache-assisted content delivery networks with wireless backhaul. IEEE Wireless Commun Lett 7(3):332–335.  https://doi.org/10.1109/LWC.2017.2776924 CrossRefGoogle Scholar
  41. 41.
    Ren G, Qu H, Zhao J, et al (2017) A distributed user association and resource allocation method in cache-enabled small cell networks. China Commun 14(10):95–107.  https://doi.org/10.1109/CC.2017.8107635 CrossRefGoogle Scholar
  42. 42.
    Jiang J, Zhang S, Li B, Li B (2016) Maximized cellular traffic offloading via device-to-device content sharing. IEEE J Selected Areas Commun 34(1):82–91.  https://doi.org/10.1109/JSAC.2015.2452493 CrossRefGoogle Scholar
  43. 43.
    Wang S, Zhang Y, Wang H, et al. (2018) Large scale measurement and analytics on social groups of device-to-device sharing in mobile social networks. Mob Netw Appl 23(2):203–215.  https://doi.org/10.1007/s11036-017-0927-5 MathSciNetCrossRefGoogle Scholar
  44. 44.
    Wang Z, Sun L, Zhang M, et al. (2017) Propagation- and mobility-aware D2D social content replication. IEEE Trans Mob Comput 16(4):1107–1120.  https://doi.org/10.1109/TMC.2016.2582159 CrossRefGoogle Scholar
  45. 45.
    Zhou H, Leung VCM, Zhu C, et al. (2017) Predicting temporal social contact patterns for data forwarding in opportunistic mobile networks. IEEE Trans Veh Technol 66(11):10372–10383.  https://doi.org/10.1109/TVT.2017.2740218 CrossRefGoogle Scholar
  46. 46.
    Ali KS, ElSawy H, Alouini M -S (2016) Modeling cellular networks with full-duplex D2D communication: a stochastic geometry approach. IEEE Trans Commun 64(10):4409–4424.  https://doi.org/10.1109/TCOMM.2016.2601912 CrossRefGoogle Scholar
  47. 47.
    Breslau L, Cao P, Fan L et al (1999) Web caching and Zipf-like distributions: evidence and implications. In: Proceedings of IEEE conference on computer communications (INFOCOM), pp 126–134.  https://doi.org/10.1109/INFCOM.1999.749260
  48. 48.
    Zheng K, Yang Z, Zhang K, et al. (2016) Big data-driven optimization for mobile networks toward 5G. IEEE Netw 30(1):44–51.  https://doi.org/10.1109/MNET.2016.7389830 CrossRefGoogle Scholar
  49. 49.
    Zeydan E, Baştug E, Bennis M, et al. (2016) Big data caching for networking: moving from cloud to edge. IEEE Commun Mag 54(9):36–42.  https://doi.org/10.1109/MCOM.2016.7565185 CrossRefGoogle Scholar
  50. 50.
    Zhou B, Cui Y, Tao M (2016) Stochastic content-centric multicast scheduling for cache-enabled heterogeneous cellular networks. IEEE Trans Wirel Commun 15(9):6284–6297.  https://doi.org/10.1109/TWC.2016.2582689 CrossRefGoogle Scholar
  51. 51.
    Malak D, Al-Shalash M, Andrews JG (2018) Spatially correlated content caching for device-to-device communications. IEEE Trans Wirel Commun 17(1):56–70.  https://doi.org/10.1109/TWC.2017.2762661 CrossRefGoogle Scholar
  52. 52.
    Lee S, Huang K (2012) Coverage and economy of cellular networks with many base stations. IEEE Commun Lett 16(7):1038–1040.  https://doi.org/10.1109/LCOMM.2012.042512.120426 CrossRefGoogle Scholar
  53. 53.
    Andrews JG, Baccelli F, Ganti RK (2011) A tractable approach to coverage and rate in cellular networks. IEEE Trans Commun 59(11):3122–3134.  https://doi.org/10.1109/TCOMM.2011.100411.100541 CrossRefGoogle Scholar
  54. 54.
    Haenggi M (2012) Stochastic geometry for wireless networks. Cambridge University Press, New YorkCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.Suzhou Caiyun Network Technologies Co., LtdSuzhouChina
  3. 3.School of Telecommunication and Information EngineeringXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations