Advertisement

Mobile Networks and Applications

, Volume 23, Issue 4, pp 1028–1034 | Cite as

Rateless Coding Based Incremental Redundancy HARQ Scheme for SCMA Systems

  • Min Zhu
  • Qingli He
  • Rui Zhang
  • Baoming Bai
Article
  • 145 Downloads

Abstract

In this paper, we present a rateless coding based incremental redundancy (IR) HARQ scheme for sparse code multiple access (SCMA) systems over fading channels, where each user is assumed to use rateless codes. Two different IR-HARQ strategies are proposed for the SCMA system to investigate the performance from different angles. One scheme mainly focuses on how to combine the incremental decoding and the multi-user detection (termed as the original rateless coding based IR-HARQ strategy). The other scheme employs the iteration between the incremental decoding and the multi-user detection to improve the performance (termed as the joint detection-decoding rateless coding based IR-HARQ strategy). We investigate the performance of these two strategies over the AWGN and fast-fading channels. Simulation results show that, with the proposed IR-HARQ scheme, the SCMA system performance improves with the increase of the retransmission. Furthermore, with the help of the iteration between the detector and the decoding, the SCMA system with the joint detection-decoding rateless coding based IR-HARQ strategy outperforms the original one.

Keywords

HARQ Iterative decoding Incremental redundancy Rateless SCMA 

Notes

Acknowledgments

This work is supported in part by National Natural Science Foundation of China under Grants No. 61701368, 61372074, and by the National Basic Research Program of China (973 Program) under Grant No. 2012CB316100.

References

  1. 1.
    Luo F, Zhang J (2016) Signal processing for 5G: algorithms and implementations, 1st edn. Wiley-IEEE Press, New YorkCrossRefGoogle Scholar
  2. 2.
    Saito Y, Kishiyama Y, Benjebbour A, Nakamura T, Li A, Higuchi K (2013) Non-orthogonal multiple access (NOMA) for cellular future radio access. In: Proceedings of IEEE 77th Veh. Technol. Conf., Dresden, pp 1–5Google Scholar
  3. 3.
    Li P (2005) Interleave-division multiple access and chip-by-chip iterative multi-user detection. IEEE Commun Mag 43(6):S19–S23CrossRefGoogle Scholar
  4. 4.
    Ping L, Lihai L, Wu KY, Leung WK (2004) On interleave-division multiple-access. In: Proceedings of IEEE international conference on communication, pp 2869-2873Google Scholar
  5. 5.
    Yuan Z, Yu G, Li W, Yuan Y, Wang X, Xu J (2016) Multi-user shared access for Internet of Things. In: Proceedings of IEEE 83rd vehicular technology conference (VTC Spring), Nanjing, pp 1–5Google Scholar
  6. 6.
    Zeng J, Li B, Su X, Rong L, Xing R (2015) Pattern division multiple access (PDMA) for cellular future radio access. In: Proceedings of international conference on wireless communications & signal processing (WCSP), Nanjing, pp 1–5Google Scholar
  7. 7.
    Nikopour H, Baligh H (2013) Sparse code multiple access. In: Proceedings of IEEE 24th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), London, pp 332–336Google Scholar
  8. 8.
    Mahmoud T, Hosein N, Alireza B, Hadi B (2014) SCMA codeproceedings design. In: Proceedings of IEEE 80th Vehicular Technology Conference (VTC Fall), pp 1–5Google Scholar
  9. 9.
    Jinchen B, Zheng M, Zhiguo D, Karagiannidis GK, Zhongliang Z (2016) On the design of multiuser codeproceedingss for uplink SCMA systems. IEEE Commun Lett 20(10):1920–1923CrossRefGoogle Scholar
  10. 10.
    Lin Y, Yunyun L, Yunming S (2016) Low complexity message passing algorithm for SCMA system. IEEE Commun Lett 20(12):2466–2469CrossRefGoogle Scholar
  11. 11.
    Fan W, Wen C (2017) Low complexity iterative receiver design for sparse code multiple access. IEEE Trans Commun 65(2):621–634CrossRefGoogle Scholar
  12. 12.
    Siyang T, Li H, Zheng M (2016) Low complexity joint MPA detection for downlink MIMO-SCMA. In: Proceedings of IEEE global communications conference (GLOBECOM), Washington, DC USA, pp 1–4Google Scholar
  13. 13.
    He K, Li Y, Yin C (2016) Sparse multi-user detection for non-orthogonal multiple access in 5G systems. In: Proceedings of IEEE 27th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), Valencia, Spain, pp 1–5Google Scholar
  14. 14.
    Qingli H, Baoming B, Dan F, Hengzhou X, Min Z (2017) A nonbinary LDPC-coded SCMA system with optimized codeproceedings Ddesign. In: IEEE Vehicular Technology Conference (VTC)-Fall Workshop on Non-Orthogonal Multiple Access Techniques for 5G Radio Access Networks, acceptedGoogle Scholar
  15. 15.
    Yin L, Zhi C, Zhiwu G, Jun F (2016) A novel HARQ scheme for SCMA systems. IEEE Wireless Commun Lett 5(5):452–455CrossRefGoogle Scholar
  16. 16.
    Min Z, Baoming B, Jinfang D, Ma X (2014) Kite code-based incremental redundancy hybrid ARQ scheme for fast-fading channels. Chin Sci Bull 59(35):5029–5041CrossRefGoogle Scholar
  17. 17.
    Luby M (2002) LT codes. In: Proceedings of the 43rd symposium on foundations of computer science, Vancouver, BC, pp 271– 280Google Scholar
  18. 18.
    Shokrollahi A (2006) Raptor codes. IEEE Trans Inf Theory 52(6):2551–2567MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Palanki R., Yedidia JS (2004) Rateless codes on noisy channels. In: Proceedings of IEEE international symposium on information theory (ISIT), Chicago, Illinois, USA, p 37Google Scholar
  20. 20.
    Xiao M, Kai Z, Baoming B, Zhang X Serial concatenation of RS codes with Kite codes: performance analysis, iterative decoding and design. Available at arXiv:1104.4927
  21. 21.
    Kai Z, Xiao M, Shancheng Z, Baoming B, Xiaoyi Z (2012) A new ensemble of rate-compatible LDPC codes. In: Proceedings of IEEE international symposium on information theory (ISIT), Boston, MA, USA, pp 2536–2540Google Scholar
  22. 22.
    Bo Bai, Baoming Bai, Ma Xiao (2012) Simple rateless error-correcting codes for fading channels. Sci China Inf Sci 55(10):2194–2206MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Min Z, Yucheng Q, Kai Z, Baoming B, Xiao M (2014) An improved ensemble of variable-rate LDPC codes with precoding. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), Hongkong, China, pp 2177–2181Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.ISN State Key LaboratoryXidian UniversityXi’anChina

Personalised recommendations