Advertisement

Mobile Networks and Applications

, Volume 23, Issue 4, pp 921–939 | Cite as

Hybrid Lower-Complexity Wiener Filter for Pilot-Based Channel Estimation for C-RS in LTE-A DL System

With Throughput Evaluation Using 3GPP LTE-A Test Cases
  • Mohammed Zourob
  • Raveendra Rao
Article

Abstract

This paper presents a pilot-based lower complexity channel estimation for Long Term Evolution Advanced (LTE-A) Cell-specific Reference Signals (C-RS). The proposed system is a hybrid one, based on using 2 × 1-D Wiener filter for noise filtering at pilot locations only with cubic spline interpolation for data symbol locations, with accuracy that almost matches the 2-D Wiener filter and Wiener interpolation under certain channel and noise conditions, and at reduced computational complexity. The performance of the proposed scheme is evaluated in terms of Mean Squared Error (MSE) under various channel conditions. Complexity analysis show that the proposed scheme requires 8.8% of the number of computations needed by 2-D Wiener filtering with Wiener interpolation, while still matching its performance up till specific noise and channel conditions. In addition, 2 × 1-D Wiener filter performance is proven to be sub-optimal when compared with the performance of 2-D Wiener filter. The obtained results show that the best noise filtering method is a combination of both moving average and Wiener filtering, where the lower bound is a function of both Symbol-to-Noise-Ratio (SNR) and the channel statistics. Simulations in real-life LTE-A scenarios confirms the feasibility of the proposed channel estimation scheme. Analytical results wherever possible and, in general, simulation results are presented.

Keywords

LTE LTE advanced Channel estimation C-RS-aided channel estimation Wiener interpolation OFDM Spline interpolation 

References

  1. 1.
    Qualcom Inc., The 100 × data challenge, Oct. 2013. [Online]. Available: http://www.qualcomm.com/solutions/wirelessnetworks/technologies/1000x-data
  2. 2.
    Ericson, 5g radio access-research and vision, June 2013. [Online]. Available: http://www.ericsson.com/res/docs/whitepapers/wp-5g.pdf
  3. 3.
    Cisco, cisco visual networking index: global mobile data traffic forecast update, 2013-2018, Feb. 2014. [Online]. Available: http://www.cisco.com/c/en/us/solutions
  4. 4.
    LTE; Evolved universal terrestrial radio access (e-UTRA), LTE physical layer, 3GPP TS 36.300, 2011Google Scholar
  5. 5.
    Sumathi K, Valarmathi ML (2012) Resource allocation in multiuser OFDM systems — a survey. In: 2012 Third international conference on computing communication & networking technologies (ICCCNT), Coimbatore, pp 1–8Google Scholar
  6. 6.
    Dahlman E, Parkvall S, Skold J (2013) 4G: LTE/LTE-advanced for mobile broadband, 2nd edn. Academic Press, London, UKGoogle Scholar
  7. 7.
    Digital video broadcasting (DVB); frame structure, channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-t2), ETSI standard (EN) 302 755, 2011Google Scholar
  8. 8.
    IEEE Standard for wireless MAN-advanced air interface for broadband wireless access systems, std. IEEE 802.16.1- 2012Google Scholar
  9. 9.
    IEEE Standard for information technology, telecommunications and information exchange between systems local and metropolitan area networks, part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, IEEE std. 802.11-2012Google Scholar
  10. 10.
    Lin H (2015) Flexible configured OFDM for 5G air interface. IEEE Access 3:1861–1870CrossRefGoogle Scholar
  11. 11.
    Morelli M, Mengali U (2001) A comparison of pilot-aided channel estimation methods for OFDM systems. IEEE Trans Signal Process 49(12):3065–3073CrossRefGoogle Scholar
  12. 12.
    Li Y (2000) Pilot-symbol-aided channel estimation for OFDM in wireless systems. IEEE Trans Veh Technol 49(4):1207–1215CrossRefGoogle Scholar
  13. 13.
    Chen W, Chung C (2017) Spectrally efficient OFDM pilot waveform for channel estimation. IEEE Trans Commun 65(1):387– 402Google Scholar
  14. 14.
    He X, Song R, Zhu W (2016) Pilot allocation for distributed-compressed-sensing-based sparse channel estimation in MIMO-OFDM systems. IEEE Trans Veh Technol 65(5):2990–3004CrossRefGoogle Scholar
  15. 15.
    Mohammadian R, Amini A, Khalaj BH (2017) Compressive sensing-based pilot design for sparse channel estimation in OFDM systems. IEEE Commun Lett 21(1):4–7CrossRefGoogle Scholar
  16. 16.
    Dong X, Lu W, Soong A (2007) Linear interpolation in pilot symbol assisted channel estimation for OFDM. IEEE Trans Wireless Commun 6(5):1910–1920CrossRefGoogle Scholar
  17. 17.
    Chang MX, Hsieh TD (2008) Detection of OFDM signals in fast-varying channels with low-density pilot symbols. IEEE Trans Veh Technol 57(2):859–872CrossRefGoogle Scholar
  18. 18.
    Qi C, Yue G, Wu L, Huang Y, Nallanathan A (2015) Pilot design schemes for sparse channel estimation in OFDM systems. IEEE Trans Veh Technol 64(4):1493–1505CrossRefGoogle Scholar
  19. 19.
    Banani S, Vaughan R (2010) OFDM with iterative blind channel estimation. IEEE Trans Veh Technol 59 (9):4298–4308CrossRefGoogle Scholar
  20. 20.
    Al-Dweik A, Iraqi Y (2016) Error probability analysis and applications of amplitude-coherent detection in flat Rayleigh fading channels. IEEE Trans Commun 64(5):2235–2244CrossRefGoogle Scholar
  21. 21.
    Tu C, Champagne B (2010) Subspace-based blind channel estimation for MIMO-OFDM systems with reduced time averaging. IEEE Trans Veh Technol 59(3):1539–1544CrossRefGoogle Scholar
  22. 22.
    Gao F, Zeng Y, Nallanathan A, Ng TS (2008) Robust subspace blind channel estimation for cyclic prefixed MIMO OFDM systems. IEEE J Sel Areas Commun 26(2):378–388CrossRefGoogle Scholar
  23. 23.
    Necker MC, Stüber GL (2004) Totally blind channel estimation for OFDM on fast varying mobile radio channels. IEEE Trans Wireless Commun 3(5):1514–1525CrossRefGoogle Scholar
  24. 24.
    Gao F, Nallanathan A (2007) Blind channel estimation for MIMO OFDM systems via non redundant linear precoding. IEEE Trans Signal Process 55(2):784–789MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Al-Naffouri T, Dahman A, Sohail M, Xu W, Hassibi B (2012) Low-complexity blind equalization for OFDM systems with general constellations. IEEE Trans Signal Process 60(12):6395– 6407MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Chang M-X, Su YT (2002) Performance analysis of equalized OFDM systems in Rayleigh fading. IEEE Trans Wireless Commun 1(4):721–732CrossRefGoogle Scholar
  27. 27.
    Ozdemir MK, Arslan H (2007) Channel estimation for wireless ofdm systems. IEEE Commun Surv Tutorials 9(2):18–48CrossRefGoogle Scholar
  28. 28.
    Hou J, Liu J (2010) A novel channel estimation algorithm for 3gpp lte downlink system using joint time-frequency two-dimensional iterative wiener filter. In: 2010 IEEE 12th international conference on communication technology, pp 289–292Google Scholar
  29. 29.
    Zhou W, Lam WH (2008) A novel method of Doppler shift estimation for OFDM systems. In: 2008 IEEE military communications conference on MILCOM 2008. San Diego, pp 1–7Google Scholar
  30. 30.
    Guo Q, Wu M, Zhang Q, Hao X, Sun Y (2012) Channel estimation for ofdm systems over time-varying and sparse dispersive channels. In: 2012 IEEE 75th vehicular technology conference (VTC Spring), pp 1–5Google Scholar
  31. 31.
    Zhang J, Mu X, Chen E, Yang S (2009) Decision-directed channel estimation based on iterative linear minimum mean square error for orthogonal frequency division multiplexing systems. IET Commun 3(7):1136–1143CrossRefGoogle Scholar
  32. 32.
    Tang H, Lau KY, Brodersen RW (2002) Interpolation-based maximum likelihood channel estimation using ofdm pilot symbols. IEEE 2:1860–1864Google Scholar
  33. 33.
    Ekstrom MP (1982) Realizable Wiener filtering in two dimensions. IEEE Trans Acoust Speech, Signal Proc 30(2):31–40CrossRefzbMATHGoogle Scholar
  34. 34.
    Zourob M, Rao R (2017) A low-complexity c-RS-aided channel estimation scheme for LTE downlink system. In: The 1st EAI international conference on smart grid assisted internet of things, Sault Ste. Marie, Ontario, CanadaGoogle Scholar
  35. 35.
    Schulze D, Henrik, Luders C (2005) Theory and applications of OFDM and CDMA: wideband wireless communications. Wiley, HobokenCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Electrical and Computer EngineeringUniversity of Western OntarioLondonCanada

Personalised recommendations