Mobile Networks and Applications

, Volume 23, Issue 4, pp 956–966 | Cite as

Energy Harvesting Cognitive Radio Networking for IoT-enabled Smart Grid

  • Mustafa OzgerEmail author
  • Oktay Cetinkaya
  • Ozgur B. Akan


The Internet of Things (IoT) provides connectivity to the objects that monitor and sense the environment to integrate physical world with digital world. If IoT is enabled in the Smart Grid (SG), it can benefit from advantages of the IoT such as interoperability, connectivity, etc. By combining the IoT with energy harvesting (EH) and cognitive radio (CR) techniques, the problems of SG, such as harsh channel conditions and limited battery power, may be resolved. Hence, incorporation of EH and CR reveals a new networking paradigm for IoT-enabled SG. To this end, we first introduce CR usage in the IoT-enabled SG, and explain the advantages and challenges of CRs. Furthermore, we propose EH approaches for the resource constraint of wireless devices in the IoT-enabled SG. Operation and node architecture of energy harvesting cognitive radios (EH-CR), and network architecture of the IoT-enabled SG are described to explain details of our networking paradigm. Open issues and future research directions are discussed to enable this new paradigm.


Energy harvesting Cognitive radio Internet of things Smart grids 


  1. 1.
    Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (IoT): A vision, architectural elements, and future directions. Comput Netw 29(7):1645–1660Google Scholar
  2. 2.
    Atzori L, Iera A, Morabito G (2010) The Internet of things: A survey. Comput Netw 54(15):2787–2805CrossRefzbMATHGoogle Scholar
  3. 3.
    Chen S, Xu H, Liu D, Hu B, Wang H (2014) A vision of IoT: Applications, challenges, and opportunities with China perspective. IEEE Internet Things J 1(4):349–359CrossRefGoogle Scholar
  4. 4.
    Bose A (2010) Smart transmission grid applications and their supporting infrastructure. IEEE Trans Smart Grid 1(1):11–19CrossRefGoogle Scholar
  5. 5.
    Farhangi H (2010) The path of the smart grid. IEEE Power Energ Mag 8(1):18–28MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hauser CH, Bakken DE, Bose A (2005) A failure to communicate: next generation communication requirements, technologies, and architecture for the electric power grid. IEEE Power Energ Mag 3(2):47–55CrossRefGoogle Scholar
  7. 7.
    Bicen AO, Akan OB, Gungor VC (2012) Spectrum-aware and cognitive sensor networks for smart grid applications. IEEE Commun Mag 50(5):158–165CrossRefGoogle Scholar
  8. 8.
    Shah DU, Patel CB (2016) IoT Enabled Smart Grid. In: National Conference on ICT & IoTGoogle Scholar
  9. 9.
    Shah GA, Gungor VC, Akan OB (2013) A cross-layer qos-aware communication framework in cognitive radio sensor networks for smart grid applications. IEEE Trans Ind Inf 9(3):1477–1485CrossRefGoogle Scholar
  10. 10.
    Ou Q et al (2012) Application of internet of things in smart grid power transmission. In: 3rd FTRA international conference mobile, ubiquitous, and intelligent computingGoogle Scholar
  11. 11.
    Ahmed E, Yaqoob I, Gani A, Imran M, Guizani M (2016) Internet-of-things-based smart environments: state of the art, taxonomy, and open research challenges. IEEE Wirel Commun 23(5):10–16CrossRefGoogle Scholar
  12. 12.
    Gungor VC, Lu B, Hancke GP (2010) Opportunities and challenges of wireless sensor networks in smart grid. IEEE Trans Ind Electronics 57(10):3557–3564CrossRefGoogle Scholar
  13. 13.
    Gungor VC, Sahin D, Kocak T, Ergut S (2011) Smart grid technologies: Communication technologies and standards. IEEE Trans Ind Inf 7(4):529–539CrossRefGoogle Scholar
  14. 14.
    Gungor VC, Lu B, Hancke GP (2010) Opportunities and Challenges of Wireless Sensor Networks in Smart Grid. IEEE Trans Ind Electron 57(10):3557–3564CrossRefGoogle Scholar
  15. 15.
    Ghassemi A, Bavarian S, Lampe L (2010) Cognitive radio for smart grid communications. In: 1st IEEE international conference on smart grid communicationsGoogle Scholar
  16. 16.
    Akyildiz IF, Lee W -Y, Vuran MC, Mohanty S (2006) NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Comput Netw 50(13):2127–2159CrossRefzbMATHGoogle Scholar
  17. 17.
    Yu R et al (2011) Cognitive radio based hierarchical communications infrastructure for smart grid. IEEE Netw 25(5):6–14CrossRefGoogle Scholar
  18. 18.
    Gao J et al (2012) A survey of communication/networking in smart grids. Futur Gener Comput Syst 28 (2):391–404CrossRefGoogle Scholar
  19. 19.
    Kuzlu M, Pipattanasomporn M, Rahman S (2014) Communication network requirements for major smart grid applications in HAN, NAN and WAN. Comput Netw 67(2014):74–88CrossRefGoogle Scholar
  20. 20.
    Ergul E, Cetinkaya O, Akan OB (2016) Cognitive radio sensor networks in smart grid. CRC Press, Boca RatonCrossRefGoogle Scholar
  21. 21.
    Yang Y, Lambert F, Divan D (2007) A survey on technologies for implementing sensor networks for power delivery systems. In: IEEE power engineering society general meetingGoogle Scholar
  22. 22.
    Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: A survey. Comput Netw 38(4):393–422CrossRefGoogle Scholar
  23. 23.
    Gungor VC, Hancke GP (2009) Industrial wireless sensor network: Challenges, design principles, and technical approaches. IEEE Trans Ind Electron 56(10):4258–4265CrossRefGoogle Scholar
  24. 24.
    Wu Q et al (2014) Cognitive internet of things: a new paradigm beyond connection. IEEE Internet Things J 1(2):129–143CrossRefGoogle Scholar
  25. 25.
    Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas 23(2):201–220CrossRefGoogle Scholar
  26. 26.
    Akyildiz IF, Lee W -Y, Vuran MC, Mohanty S (2008) A Survey on Spectrum Management in Cognitive Radio Networks. IEEE Commun Mag 46(4):40–48CrossRefGoogle Scholar
  27. 27.
    Bui N, Castellani AP, Casari P, Zorzi M (2012) The internet of energy: A web-enabled smart grid system. IEEE Netw 26(4):39–45CrossRefGoogle Scholar
  28. 28.
    Matiko JW et al (2013) Review of the application of energy harvesting in buildings. Meas Sci Technol 25 (1):1–25Google Scholar
  29. 29.
    Ku ML et al (2015) Advances in energy harvesting communications: Past, present, and future challenges. IEEE Commun Surv Tutorials 18(2):1384–1412CrossRefGoogle Scholar
  30. 30.
    Moghe R et al (2009) A scoping study of electric and magnetic field energy harvesting for wireless sensor networks in power system applications. In: IEEE Energy Conv. Congr.: 3550–3557Google Scholar
  31. 31.
    Cetinkaya O, Akan OB (2017) Electric-field energy harvesting in wireless networks. IEEE Wireless Communications 24(2):34–41CrossRefGoogle Scholar
  32. 32.
    OpenHAN task force of the utility AMI working group (2008) Utility AMI 2008 home area network system requirements specification.
  33. 33.
    Kailas A, Cecchi V, Mukherjee A (2012) A survey of communications and networking technologies for energy management in buildings and home automation. J Comput Netw Commun 2012:1–12CrossRefGoogle Scholar
  34. 34.
    Cetinkaya O, Akan OB (2015) A DASH7-based Metering System. In: Proceedings the 13th Annual Consumer Communications and Networking Conference (CCNC)Google Scholar
  35. 35.
    Erol-Kantarci M, Mouftah HT (2011) Wireless sensor networks for cost-efficient residential energy management in the smart grid. IEEE Trans Smart Grid 2(2):314–325CrossRefGoogle Scholar
  36. 36.
    Yu R et al (2012) Cognitive radio based hierarchical communications infrastructure for smart grid. IEEE Netw 25(5):6–14CrossRefGoogle Scholar
  37. 37.
    Wang W, Xu Y, Khanna M (2011) A Survey on the Communication Architectures in Smart Grid. Comput Netw 55(15):3604–3629CrossRefGoogle Scholar
  38. 38.
    Baig MS, Das S, Rajalakshmi P (2013) CR based WSAN for Field Area Network in Smart Grid. In: Proceedings international conference on advances in computing, communications and informatics (ICACCI)Google Scholar
  39. 39.
    Sood VK, Fischer D, Eklund JM, Brown T (2009) Developing a communication infrastructure for the smart grid. In: IEEE electrical power and energy conference (EPEC)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Next-generation Wireless Communications Laboratory, Department of Electrical and Electronics EngineeringKoc UniversityIstanbulTurkey
  2. 2.Internet of Everything (IoE) Group, Electrical Engineering Division, Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations