Advertisement

Mobile Networks and Applications

, Volume 24, Issue 2, pp 678–687 | Cite as

Energy Efficiency in Cooperative Wireless Sensor Networks

  • Sandra SendraEmail author
  • Jaime Lloret
  • Raquel Lacuesta
  • Jose Miguel Jimenez
Article
  • 149 Downloads

Abstract

The transport of sensitive products is very important because their deterioration may cause the value lost and even the product rejection by the buyer. In addition, it is important to choose the optimal way to achieve this end. In a data network, the task of calculating the best routes is performed by routers. We can consider the optimal path as the one that provides a shortest route. However, if a real transport network is considered the shortest path can sometimes be affected by incidents and traffic jams that would make it inadvisable. On the other hand, when we need to come back, due to features that symmetry provides, it would be interesting to follow the same path in reverse sense. For this reason, in this paper we present a symmetric routing mechanism for cooperative monitoring system for the delivery of fresh products. The systems is based on a combination of fixed nodes and a mobile node that stores the path followed to be able of coming back following the same route in reverse sense. If this path is no longer available, the system will try to maintain the symmetry principle searching the route that provide the shortest time to the used in the initial trip. The paper shows the algorithm used by the systems to calculate the symmetric routes. Finally, the system is tested in a real scenario which combines different kind of roads. As the results shows, the energy consumption of this kind of nodes is highly influenced by the activity of sensors.

Keywords

Energy efficiency Symmetric routing Cooperative monitoring Wireless sensor networks (WSN) Delivery Fresh products 

Notes

Acknowledgements

This work has been supported by the “Ministerio de Economía y Competitividad”, through the “Convocatoria 2014. Proyectos I+D -Programa Estatal de Investigación Científica y Técnica de Excelencia” in the “Subprograma Estatal de Generación de Conocimiento”, (project TIN2014-57991-C3-1- P) and the “programa para la Formación de Personal Investigador – (FPI-2015-S2-884)” by the “Universitat Politècnica de València”.

References

  1. 1.
    Derks HG, Buehler WS, Hall MB (2013) Real-time method and system for locating a mobile object or person in a tracking environment. US Patent 8514071 B2. Aug 20, 2013Google Scholar
  2. 2.
    Witmond R, Dutta R, Charroppin P (2006) Method for tracking a mail piece. US Patent 7003376 B2, Feb 21, 2006Google Scholar
  3. 3.
    Lu L, Liu Y, Han J (2015) ACTION: breaking the privacy barrier for RFID systems. Ad Hoc and Sensor Wireless Networks 24(1–2):135–159Google Scholar
  4. 4.
    Dhakal S, Shin S (2013) Precise time system efficiency of a frame slotted aloha based anti-collision algorithm in a RFID system. Network Protocols and Algorithms 5(2):16–27. doi: 10.5296/npa.v5i2.3373 CrossRefGoogle Scholar
  5. 5.
    Ghafoor KZ, Bakar KA, Lloret J, Khokhar RH, Lee KC (2013) Intelligent beaconless geographical forwarding for urban vehicular environments. Wirel Netw 19(3):345–362. doi: 10.1007/s11276-012-0470-z CrossRefGoogle Scholar
  6. 6.
    Weinsberg U, Shavitt Y, Schwartz Y (2009) Stability and symmetry of internet routing. In proc of the 2009 I.E. INFOCOM Workshops 2009, April 19–25, Rio de Janeiro, Brazil, p 1–2 doi: 10.1109/INFCOMW.2009.5072192
  7. 7.
    Garcia M, Bri D, Sendra S, Lloret J (2010) Practical deployments of wireless sensor networks: a survey. Int Journal on Advances in Networks and Services 3(1&2):163–178Google Scholar
  8. 8.
    Bri D, Garcia M, Lloret J, Dini P (2009) Real deployments of wireless sensor networks. in Proc of the third International Conference on Sensor Technologies and Applications (SENSORCOMM’09), June 18–23. Athens (Greece), p 415–423 doi: 10.1109/SENSORCOMM.2009.69
  9. 9.
    Karim L, Anpalagan A, Nasser N, Almhana J (2013) Sensor-based M2 M agriculture monitor-ing Systems for Developing Countries: state and challenges. Network Protocols and Algorithms 5(3):68–86. doi: 10.5296/npa.v5i3.3787 CrossRefGoogle Scholar
  10. 10.
    Garcia M, Lloret J, Sendra S, Rodrigues JJPC (2011) Taking cooperative decisions in group-based wireless sensor networks. Lect Notes Comput Sci 6874:61–65. doi: 10.1007/978-3-642-23734-8_9 CrossRefGoogle Scholar
  11. 11.
    Garcia M, Sendra S, Lloret J, Lacuesta R (2010) Saving energy with cooperative group-based wireless sensor networks. Lect Notes Comput Sci 6240:231–238. doi: 10.1007/978-3-642-16066-0_11 CrossRefGoogle Scholar
  12. 12.
    Silva FN, Comin CH, Peron TKDM, Rodrigues FA, Ye C, Wilson RC, Hancock ER, Costa LF (2016) Concentric network symmetry. Inf Sci 333:61–80. doi: 10.1016/j.ins.2015.11.014 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jedermann R, Schouten R, Sklorz A, Lang W, Van Kooten O (2006) Linking keeping quality models and sensor systems to an autonomous transport supervision system. In proc of the 2nd Int Workshop Cold Chain Management, May 8–9, Bonn, Germany, p 3–18Google Scholar
  14. 14.
    Li J, Cao J (2015) Survey of object tracking in wireless sensor networks. Ad Hoc and Sensor Wireless Networks 25(1–2):89–120Google Scholar
  15. 15.
    Shamsuzzoha A, Addo-Tenkorang R, Phuong D, Helo P. (2011). Logistics tracking: An implementation issue for delivery network. In proc of the PICMET’11: Conference Technology Management in the Energy Smart World, July 31–August 4, Portland, (Oregon-USA) p 1–10Google Scholar
  16. 16.
    Torres RV, Sanchez JC, Galan LM (2014) Unmarked point and adjacency vertex, mobility models for the generation of emergency and rescue scenarios in urban areas. Ad Hoc and Sensor Wireless Networks 23(3–4):211–233Google Scholar
  17. 17.
    Paxson V (1997) Measurements and Analysis of End-to-End Internet Dynamics. (Ph.D. Thesis). University of California, Berkeley. April, 1997. Available at: ftp://ftp.ee.lbl.gov/papers/vp-thesis/ Last access: 18 Oct 2016
  18. 18.
    Codish M, Frank M, Itzhakov A, Miller A. (2014). Solving Graph Coloring Problems with Abstraction and Symmetry. AarXiv preprint arXiv:1409.5189. Available at: http://arxiv.org/abs/1409.5189 Last access: 18 Oct 2016
  19. 19.
    Chambers D, Flapan E (2014) Topological symmetry groups of small complete graphs. Symmetry 6(2):189–209. doi: 10.3390/sym6020189 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gong Y, Zhang W, Zhang Z, Li Y (2016) Research and implementation of traffic sign recognition system. Wireless Communications, Networking and Applications 348:553–560. doi: 10.1007/978-81-322-2580-5_50 CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Wang Z, Lu M, Yuan X, Zhang J, Van De Wetering H (2013) Visual traffic jam analysis based on trajectory data. IEEE Trans Vis Comput Graph 19(12):2159–2168. doi: 10.1109/TVCG.2013.228 CrossRefGoogle Scholar
  23. 23.
    Meghanathan N, Mumford P (2013) Centralized and distributed algorithms for stability-based data gathering in mobile sensor networks. Network Protocols and Algorithms 5(4):84–116. doi: 10.5296/npa.v5i4.4208 CrossRefGoogle Scholar
  24. 24.
    Alrajeh NA, Khan S, Lloret J, Loo J (2014) Artificial neural network based detection of energy exhaustion attacks in wireless sensor networks capable of energy harvesting. Ad Hoc & Sensor Wireless Networks 22(3–4):109–133Google Scholar
  25. 25.
    Garcia M, Sendra S, Lloret J, Canovas A (2013) Saving energy and improving communications using cooperative group-based wireless sensor networks. Telecommun Syst 52(4):2489–2502. doi: 10.1007/s11235-011-9568-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Signal Theory, Telematics and Communications DepartmentUniversidad de GranadaGranadaSpain
  2. 2.Universidad Politécnica de ValenciaValenciaSpain
  3. 3.Escuela Politécnica Superior de TeruelUniversidad de ZaragozaTeruelSpain

Personalised recommendations