Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Non-competitive heme oxygenase-1 activity inhibitor reduces non-small cell lung cancer glutathione content and regulates cell proliferation

  • 44 Accesses

Abstract

Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related death mainly due to its high metastatic rate. Impairment of redox homeostasis mechanisms has been previously described in NSCLC and is associated with the disease itself as well as with comorbidities such as smoking. The aim of the present in vitro study was to evaluate the effect of selective and non-competitive inhibition of heme oxygenase-1 (HO-1) on cancer redox homeostasis with particular regards to glutathione (GSH) metabolism related enzymes. NSCLC cell line (A549) was treated with the HO-1 activity inhibitor VP13/47 (10 µM) and we further evaluated cell viability, apoptosis, mitochondrial dysfunction and oxidative stress. Our results showed that VP13/47 significantly reduced HO-1 expression and total HO activity thus, resulting in a significant reduction of cell viability, proliferation and increased apoptosis, mitochondrial dysfunction and oxidative stress. Consistently with increased oxidative stress, we also showed that reduced GSH was significantly decreased and such effect was also accompanied by a significant downregulation of the enzymes involved in its biosynthesis. Taken all together our results show that selective HO-1 inhibition significantly impairs NSCLC progression and may represent a possible pharmacological strategy for new chemotherapy agents.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83(5):584–594. https://doi.org/10.4065/83.5.584

  2. 2.

    Oshita F, Morita A, Ito H, Kameda Y, Tsuchiya E, Asai S, Miyagi Y (2010) Proteomic screening of completely resected tumors in relation to survival in patients with stage I non-small cell lung cancer. Oncol Rep 24(3):637–645

  3. 3.

    Fahrmann JF, Grapov D, Phinney BS, Stroble C, DeFelice BC, Rom W, Gandara DR, Zhang Y, Fiehn O, Pass H, Miyamoto S (2016) Proteomic profiling of lung adenocarcinoma indicates heightened DNA repair, antioxidant mechanisms and identifies LASP1 as a potential negative predictor of survival. Clin Proteomics 13:31. https://doi.org/10.1186/s12014-016-9132-y

  4. 4.

    Scire A, Cianfruglia L, Minnelli C, Bartolini D, Torquato P, Principato G, Galli F, Armeni T (2019) Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. BioFactors 45(2):152–168. https://doi.org/10.1002/biof.1476

  5. 5.

    Narayanankutty A, Jdevagiri JT, Narayanankutty V (2019) Glutathione, an antioxidant tripeptide: dual roles in carcinogenesis and chemoprevention. Curr Protein Pept Sci.https://doi.org/10.2174/1389203720666190206130003

  6. 6.

    Battino M, Giampieri F, Pistollato F, Sureda A, de Oliveira MR, Pittala V, Fallarino F, Nabavi SF, Atanasov AG, Nabavi SM (2018) Nrf2 as regulator of innate immunity: a molecular Swiss army knife! Biotechnol Adv 36(2):358–370. https://doi.org/10.1016/j.biotechadv.2017.12.012

  7. 7.

    Barbagallo I, Marrazzo G, Frigiola A, Zappala A, Li Volti G (2012) Role of carbon monoxide in vascular diseases. Curr Pharm Biotechnol 13(6):787–796. https://doi.org/10.2174/138920112800399086

  8. 8.

    Barbagallo I, Nicolosi A, Calabrese G, David S, Cimino S, Madonia M, Cappello F (2014) The role of the heme oxygenase system in the metabolic syndrome. Curr Pharm Des 20(31):4970–4974. https://doi.org/10.2174/1381612819666131206103824

  9. 9.

    Vanella L, Barbagallo I, Tibullo D, Forte S, Zappala A, Li Volti G (2016) The non-canonical functions of the heme oxygenases. Oncotarget 7(42):69075–69086. https://doi.org/10.18632/oncotarget.11923

  10. 10.

    Maines MD, Abrahamsson PA (1996) Expression of heme oxygenase-1 (HSP32) in human prostate: normal, hyperplastic, and tumor tissue distribution. Urology 47(5):727–733

  11. 11.

    Noh SJ, Bae JS, Jamiyandorj U, Park HS, Kwon KS, Jung SH, Youn HJ, Lee H, Park BH, Chung MJ, Moon WS, Kang MJ, Jang KY (2013) Expression of nerve growth factor and heme oxygenase-1 predict poor survival of breast carcinoma patients. BMC Cancer 13:516. https://doi.org/10.1186/1471-2407-13-516

  12. 12.

    Degese MS, Mendizabal JE, Gandini NA, Gutkind JS, Molinolo A, Hewitt SM, Curino AC, Coso OA, Facchinetti MM (2012) Expression of heme oxygenase-1 in non-small cell lung cancer (NSCLC) and its correlation with clinical data. Lung Cancer 77(1):168–175. https://doi.org/10.1016/j.lungcan.2012.02.016

  13. 13.

    Mayerhofer M, Florian S, Krauth MT, Aichberger KJ, Bilban M, Marculescu R, Printz D, Fritsch G, Wagner O, Selzer E, Sperr WR, Valent P, Sillaber C (2004) Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res 64(9):3148–3154

  14. 14.

    Tibullo D, Barbagallo I, Giallongo C, La Cava P, Parrinello N, Vanella L, Stagno F, Palumbo GA, Li Volti G, Di Raimondo F (2013) Nuclear translocation of heme oxygenase-1 confers resistance to imatinib in chronic myeloid leukemia cells. Curr Pharm Des 19(15):2765–2770

  15. 15.

    Lin X, Fang Q, Chen S, Zhe N, Chai Q, Yu M, Zhang Y, Wang Z, Wang J (2015) Heme oxygenase-1 suppresses the apoptosis of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway. Leuk Res 39(5):544–552. https://doi.org/10.1016/j.leukres.2015.02.009

  16. 16.

    Salerno L, Romeo G, Modica MN, Amata E, Sorrenti V, Barbagallo I, Pittala V (2017) Heme oxygenase-1: a new druggable target in the management of chronic and acute myeloid leukemia. Eur J Med Chem 142:163–178. https://doi.org/10.1016/j.ejmech.2017.07.031

  17. 17.

    Raninga PV, Di Trapani G, Vuckovic S, Tonissen KF (2016) Cross-talk between two antioxidants, thioredoxin reductase and heme oxygenase-1, and therapeutic implications for multiple myeloma. Redox Biol 8:175–185. https://doi.org/10.1016/j.redox.2016.01.007

  18. 18.

    Liu ZM, Chen GG, Ng EK, Leung WK, Sung JJ, Chung SC (2004) Upregulation of heme oxygenase-1 and p21 confers resistance to apoptosis in human gastric cancer cells. Oncogene 23(2):503–513. https://doi.org/10.1038/sj.onc.1207173

  19. 19.

    Berberat PO, Dambrauskas Z, Gulbinas A, Giese T, Giese N, Kunzli B, Autschbach F, Meuer S, Buchler MW, Friess H (2005) Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res Off J Am Assoc Cancer Res 11(10):3790–3798. https://doi.org/10.1158/1078-0432.CCR-04-2159

  20. 20.

    Kweon MH, Adhami VM, Lee JS, Mukhtar H (2006) Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J Biol Chem 281(44):33761–33772. https://doi.org/10.1074/jbc.M604748200

  21. 21.

    Liu YS, Li HS, Qi DF, Zhang J, Jiang XC, Shi K, Zhang XJ, Zhang XH (2014) Zinc protoporphyrin IX enhances chemotherapeutic response of hepatoma cells to cisplatin. World J Gastroenterol 20(26):8572–8582. https://doi.org/10.3748/wjg.v20.i26.8572

  22. 22.

    Kongpetch S, Kukongviriyapan V, Prawan A, Senggunprai L, Kukongviriyapan U, Buranrat B (2012) Crucial role of heme oxygenase-1 on the sensitivity of cholangiocarcinoma cells to chemotherapeutic agents. PLoS ONE 7(4):e34994. https://doi.org/10.1371/journal.pone.0034994

  23. 23.

    Kocanova S, Buytaert E, Matroule JY, Piette J, Golab J, de Witte P, Agostinis P (2007) Induction of heme-oxygenase 1 requires the p38MAPK and PI3K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy. Apoptosis 12(4):731–741. https://doi.org/10.1007/s10495-006-0016-x

  24. 24.

    Sorrenti V, Pittala V, Romeo G, Amata E, Dichiara M, Marrazzo A, Turnaturi R, Prezzavento O, Barbagallo I, Vanella L, Rescifina A, Floresta G, Tibullo D, Di Raimondo F, Intagliata S, Salerno L (2018) Targeting heme oxygenase-1 with hybrid compounds to overcome imatinib resistance in chronic myeloid leukemia cell lines. Eur J Med Chem 158:937–950. https://doi.org/10.1016/j.ejmech.2018.09.048

  25. 25.

    Li Volti G, Tibullo D, Vanella L, Giallongo C, Di Raimondo F, Forte S, Di Rosa M, Signorelli SS, Barbagallo I (2017) The heme oxygenase system in hematological malignancies. Antioxid Redox Signal 27(6):363–377. https://doi.org/10.1089/ars.2016.6735

  26. 26.

    Salerno L, Floresta G, Ciaffaglione V, Gentile D, Margani F, Turnaturi R, Rescifina A, Pittala V (2019) Progress in the development of selective heme oxygenase-1 inhibitors and their potential therapeutic application. Eur J Med Chem 167:439–453. https://doi.org/10.1016/j.ejmech.2019.02.027

  27. 27.

    Farhan M, Malik A, Ullah MF, Afaq S, Faisal M, Farooqi AA, Biersack B, Schobert R, Ahmad A (2019) Garcinol sensitizes NSCLC cells to standard therapies by regulating EMT-modulating miRNAs. Int J Mol Sci.https://doi.org/10.3390/ijms20040800

  28. 28.

    Malfa GA, Tomasello B, Sinatra F, Villaggio G, Amenta F, Avola R, Renis M (2014) “Reactive” response evaluation of primary human astrocytes after methylmercury exposure. J Neurosci Res 92(1):95–103. https://doi.org/10.1002/jnr.23290

  29. 29.

    Acquaviva R, Sorrenti V, Santangelo R, Cardile V, Tomasello B, Malfa G, Vanella L, Amodeo A, Genovese C, Mastrojeni S, Pugliese M, Ragusa M, Di Giacomo C (2016) Effects of an extract of Celtis aetnensis (Tornab.) Strobl twigs on human colon cancer cell cultures. Oncol Rep 36(4):2298–2304. https://doi.org/10.3892/or.2016.5035

  30. 30.

    Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86(2):583–650. https://doi.org/10.1152/physrev.00011.2005

  31. 31.

    Vanella L, Russo GI, Cimino S, Fragala E, Favilla V, Li Volti G, Barbagallo I, Sorrenti V, Morgia G (2014) Correlation between lipid profile and heme oxygenase system in patients with benign prostatic hyperplasia. Urology 83(6):1444.e7-1444.e13. https://doi.org/10.1016/j.urology.2014.03.007

  32. 32.

    Barbagallo I, Vanella L, Cambria MT, Tibullo D, Godos J, Guarnaccia L, Zappala A, Galvano F, Li Volti G (2015) Silibinin regulates lipid metabolism and differentiation in functional human adipocytes. Front Pharmacol 6:309. https://doi.org/10.3389/fphar.2015.00309

  33. 33.

    Palmeri R, Monteleone JI, Spagna G, Restuccia C, Raffaele M, Vanella L, Li Volti G, Barbagallo I (2016) Olive leaf extract from Sicilian cultivar reduced lipid accumulation by inducing thermogenic pathway during adipogenesis. Front Pharmacol 7:143. https://doi.org/10.3389/fphar.2016.00143

  34. 34.

    Salerno L, Pittala V, Romeo G, Modica MN, Siracusa MA, Di Giacomo C, Acquaviva R, Barbagallo I, Tibullo D, Sorrenti V (2013) Evaluation of novel aryloxyalkyl derivatives of imidazole and 1,2,4-triazole as heme oxygenase-1 (HO-1) inhibitors and their antitumor properties. Bioorg Med Chem 21(17):5145–5153. https://doi.org/10.1016/j.bmc.2013.06.040

  35. 35.

    Furfaro AL, Traverso N, Domenicotti C, Piras S, Moretta L, Marinari UM, Pronzato MA, Nitti M (2016) The Nrf2/HO-1 axis in cancer cell growth and chemoresistance. Oxid Med Cell Longev 2016:1958174. https://doi.org/10.1155/2016/1958174

  36. 36.

    Lavrovsky Y, Schwartzman ML, Levere RD, Kappas A, Abraham NG (1994) Identification of binding sites for transcription factors NF-kappa B and AP-2 in the promoter region of the human heme oxygenase 1 gene. Proc Natl Acad Sci USA 91(13):5987–5991

  37. 37.

    Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, Semenza GL, Choi AM (1997) Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem 272(9):5375–5381

  38. 38.

    Tsai JR, Wang HM, Liu PL, Chen YH, Yang MC, Chou SH, Cheng YJ, Yin WH, Hwang JJ, Chong IW (2012) High expression of heme oxygenase-1 is associated with tumor invasiveness and poor clinical outcome in non-small cell lung cancer patients. Cell Oncol 35(6):461–471. https://doi.org/10.1007/s13402-012-0105-5

  39. 39.

    Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR, Pass HI, Bhutkar AJ, Tsirigos A, Ueberheide B, Sayin VI, Papagiannakopoulos T, Pagano M (2019) Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell 178(2):316-329.e18. https://doi.org/10.1016/j.cell.2019.06.003

  40. 40.

    Podkalicka P, Mucha O, Jozkowicz A, Dulak J, Loboda A (2018) Heme oxygenase inhibition in cancers: possible tools and targets. Contemp Oncol (Pozn) 22(1A):23–32. https://doi.org/10.5114/wo.2018.73879

  41. 41.

    Ignarro LJ, Ballot B, Wood KS (1984) Regulation of soluble guanylate cyclase activity by porphyrins and metalloporphyrins. J Biol Chem 259(10):6201–6207

  42. 42.

    Luo D, Vincent SR (1994) Metalloporphyrins inhibit nitric oxide-dependent cGMP formation in vivo. Eur J Pharmacol 267(3):263–267. https://doi.org/10.1016/0922-4106(94)90149-x

  43. 43.

    Sorrenti V, Guccione S, Di Giacomo C, Modica MN, Pittala V, Acquaviva R, Basile L, Pappalardo M, Salerno L (2012) Evaluation of imidazole-based compounds as heme oxygenase-1 inhibitors. Chem Biol Drug Des 80(6):876–886. https://doi.org/10.1111/cbdd.12015

  44. 44.

    Greish KF, Salerno L, Al Zahrani R, Amata E, Modica MN, Romeo G, Marrazzo A, Prezzavento O, Sorrenti V, Rescifina A, Floresta G, Intagliata S, Pittala V (2018) Novel structural insight into inhibitors of heme oxygenase-1 (HO-1) by new imidazole-based compounds: biochemical and in vitro anticancer activity evaluation. Molecules.https://doi.org/10.3390/molecules23051209

  45. 45.

    Floresta G, Amata E, Dichiara M, Marrazzo A, Salerno L, Romeo G, Prezzavento O, Pittala V, Rescifina A (2018) Identification of potentially potent heme oxygenase 1 inhibitors through 3D-QSAR coupled to scaffold-hopping analysis. ChemMedChem 13(13):1336–1342. https://doi.org/10.1002/cmdc.201800176

  46. 46.

    Floresta G, Pittala V, Sorrenti V, Romeo G, Salerno L, Rescifina A (2018) Development of new HO-1 inhibitors by a thorough scaffold-hopping analysis. Bioorg Chem 81:334–339. https://doi.org/10.1016/j.bioorg.2018.08.023

  47. 47.

    Amata E, Marrazzo A, Dichiara M, Modica MN, Salerno L, Prezzavento O, Nastasi G, Rescifina A, Romeo G, Pittala V (2017) Heme oxygenase database (HemeOxDB) and QSAR analysis of Isoform 1 inhibitors. ChemMedChem 12(22):1873–1881. https://doi.org/10.1002/cmdc.201700321

  48. 48.

    Amata E, Marrazzo A, Dichiara M, Modica MN, Salerno L, Prezzavento O, Nastasi G, Rescifina A, Romeo G, Pittala V (2017) Comprehensive data on a 2D-QSAR model for heme oxygenase isoform 1 inhibitors. Data Brief 15:281–299. https://doi.org/10.1016/j.dib.2017.09.036

  49. 49.

    Nastasi G, Miceli C, Pittala V, Modica MN, Prezzavento O, Romeo G, Rescifina A, Marrazzo A, Amata E (2017) S2RSLDB: a comprehensive manually curated, internet-accessible database of the sigma-2 receptor selective ligands. J Cheminform 9:3. https://doi.org/10.1186/s13321-017-0191-5

  50. 50.

    Salerno L, Amata E, Romeo G, Marrazzo A, Prezzavento O, Floresta G, Sorrenti V, Barbagallo I, Rescifina A, Pittala V (2018) Potholing of the hydrophobic heme oxygenase-1 western region for the search of potent and selective imidazole-based inhibitors. Eur J Med Chem 148:54–62. https://doi.org/10.1016/j.ejmech.2018.02.007

  51. 51.

    Hum M, McLaughlin BE, Roman G, Vlahakis JZ, Szarek WA, Nakatsu K (2010) The effects of azole-based heme oxygenase inhibitors on rat cytochromes P450 2E1 and 3A1/2 and human cytochromes P450 3A4 and 2D6. J Pharmacol Exp Ther 334(3):981–987. https://doi.org/10.1124/jpet.110.168492

  52. 52.

    Roh JL, Jang H, Kim EH, Shin D (2017) Targeting of the glutathione, thioredoxin, and Nrf2 antioxidant systems in head and neck cancer. Antioxid Redox Signal 27(2):106–114. https://doi.org/10.1089/ars.2016.6841

  53. 53.

    Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, Yung KY, Brenner D, Knobbe-Thomsen CB, Cox MA, Elia A, Berger T, Cescon DW, Adeoye A, Brustle A, Molyneux SD, Mason JM, Li WY, Yamamoto K, Wakeham A, Berman HK, Khokha R, Done SJ, Kavanagh TJ, Lam CW, Mak TW (2015) Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27(2):211–222. https://doi.org/10.1016/j.ccell.2014.11.019

  54. 54.

    Korashy HM, Maayah ZH, Al Anazi FE, Alsaad AM, Alanazi IO, Belali OM, Al-Atawi FO, Alshamsan A (2017) Sunitinib inhibits breast cancer cell proliferation by inducing apoptosis, cell-cycle arrest and DNA repair while inhibiting NF-kappaB signaling pathways. Anticancer Res 37(9):4899–4909. https://doi.org/10.21873/anticanres.11899

  55. 55.

    Furfaro AL, Piras S, Domenicotti C, Fenoglio D, De Luigi A, Salmona M, Moretta L, Marinari UM, Pronzato MA, Traverso N, Nitti M (2016) Role of Nrf2, HO-1 and GSH in neuroblastoma cell resistance to bortezomib. PLoS ONE 11(3):e0152465. https://doi.org/10.1371/journal.pone.0152465

  56. 56.

    Nakamura H, Bai J, Nishinaka Y, Ueda S, Sasada T, Ohshio G, Imamura M, Takabayashi A, Yamaoka Y, Yodoi J (2000) Expression of thioredoxin and glutaredoxin, redox-regulating proteins, in pancreatic cancer. Cancer Detect Prev 24(1):53–60

  57. 57.

    Cha MK, Suh KH, Kim IH (2009) Overexpression of peroxiredoxin I and thioredoxin1 in human breast carcinoma. J Exp Clin Cancer Res CR 28:93. https://doi.org/10.1186/1756-9966-28-93

  58. 58.

    Fath MA, Ahmad IM, Smith CJ, Spence J, Spitz DR (2011) Enhancement of carboplatin-mediated lung cancer cell killing by simultaneous disruption of glutathione and thioredoxin metabolism. Clin Cancer Res Off J Am Assoc Cancer Res 17(19):6206–6217. https://doi.org/10.1158/1078-0432.CCR-11-0736

  59. 59.

    Scarbrough PM, Mapuskar KA, Mattson DM, Gius D, Watson WH, Spitz DR (2012) Simultaneous inhibition of glutathione- and thioredoxin-dependent metabolism is necessary to potentiate 17AAG-induced cancer cell killing via oxidative stress. Free Radic Biol Med 52(2):436–443. https://doi.org/10.1016/j.freeradbiomed.2011.10.493

  60. 60.

    Saydam N, Kirb A, Demir O, Hazan E, Oto O, Saydam O, Guner G (1997) Determination of glutathione, glutathione reductase, glutathione peroxidase and glutathione S-transferase levels in human lung cancer tissues. Cancer Lett 119(1):13–19

  61. 61.

    Hopkins J, Tudhope GR (1973) Glutathione peroxidase in human red cells in health and disease. Br J Haematol 25(5):563–575

  62. 62.

    Doroshow JH, Akman S, Chu FF, Esworthy S (1990) Role of the glutathione–glutathione peroxidase cycle in the cytotoxicity of the anticancer quinones. Pharmacol Ther 47(3):359–370

  63. 63.

    Yamamoto T, Takano N, Ishiwata K, Ohmura M, Nagahata Y, Matsuura T, Kamata A, Sakamoto K, Nakanishi T, Kubo A, Hishiki T, Suematsu M (2014) Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nat Commun 5:3480. https://doi.org/10.1038/ncomms4480

  64. 64.

    He L, He T, Farrar S, Ji L, Liu T, Ma X (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 44(2):532–553. https://doi.org/10.1159/000485089

  65. 65.

    Putnam CD, Arvai AS, Bourne Y, Tainer JA (2000) Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J Mol Biol 296(1):295–309. https://doi.org/10.1006/jmbi.1999.3458

  66. 66.

    Kinnula VL, Crapo JD (2003) Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med 167(12):1600–1619. https://doi.org/10.1164/rccm.200212-1479SO

  67. 67.

    Yoo DG, Song YJ, Cho EJ, Lee SK, Park JB, Yu JH, Lim SP, Kim JM, Jeon BH (2008) Alteration of APE1/ref-1 expression in non-small cell lung cancer: the implications of impaired extracellular superoxide dismutase and catalase antioxidant systems. Lung Cancer 60(2):277–284. https://doi.org/10.1016/j.lungcan.2007.10.015

  68. 68.

    Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9(12):2277–2293. https://doi.org/10.1089/ars.2007.1782

  69. 69.

    Song S, Tan J, Miao Y, Zhang Q (2018) Crosstalk of ER stress-mediated autophagy and ER-phagy: involvement of UPR and the core autophagy machinery. J Cell Physiol 233(5):3867–3874. https://doi.org/10.1002/jcp.26137

  70. 70.

    Alasiri G, Fan LY, Zona S, Goldsbrough IG, Ke HL, Auner HW, Lam EW (2018) ER stress and cancer: the FOXO forkhead transcription factor link. Mol Cell Endocrinol 462(Pt B):67–81. https://doi.org/10.1016/j.mce.2017.05.027

  71. 71.

    Li Y, Guo Y, Tang J, Jiang J, Chen Z (2014) New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin 46(8):629–640. https://doi.org/10.1093/abbs/gmu048

Download references

Acknowledgements

This work was supported by Grants from the University of Catania (FIR 2016–2018).

Author information

Correspondence to Giovanni Li Volti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPG 141.6 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spampinato, M., Sferrazzo, G., Pittalà, V. et al. Non-competitive heme oxygenase-1 activity inhibitor reduces non-small cell lung cancer glutathione content and regulates cell proliferation. Mol Biol Rep (2020). https://doi.org/10.1007/s11033-020-05292-y

Download citation

Keywords

  • Glutathione
  • Lung cancer
  • Heme oxygenase
  • Oxidative stress