Development and utilization of an InDel marker linked to the fertility restorer genes of CMS-D8 and CMS-D2 in cotton

  • 48 Accesses


The cytoplasmic male sterility (CMS) system is a useful tool for commercial hybrid cotton seed production. Two main CMS systems, CMS-D8 and CMS-D2, have been recognized with Rf2 and Rf1 as the restorer genes, respectively. The development of molecular markers tightly linked with restorer genes can facilitate the breeding of restorer lines. In this study, the InDel-1892 marker was developed to distinguish Rf2 and Rf1 simultaneously. Sequence alignment implied that CMS-D8-Rf2 has a 32 bp insertion and that CMS-D2-Rf1 has a 186 bp insertion at the InDel-1892 locus. The codominant marker was co-segregated with Rf1 and Rf2. Hence, this marker can be used for tracing Rf1 and Rf2 simultaneously and identifying the allele status at the restorer gene locus. The results of this study will facilitate efficient marker-assisted selection for restorer lines and hybrids of CMS systems.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3(5):175–180

  2. 2.

    Sun CQ, Huang ZZ, Wang YL, Chen FD, Teng NJ, Fang WM, Liu ZL (2011) Overcoming pre-fertilization barriers in the wide cross between Chrysanthemum grandiflorum (Ramat.) Kitamura and C. nankingense (Nakai) Tzvel. by using special pollination techniques. Euphytica 178(2):195–202

  3. 3.

    Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NPJPCR (2016) Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep 35(5):967–993

  4. 4.

    Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. C R Acad Sci III 324(6):543–550. doi:

  5. 5.

    Meyer VG (1975) Male sterility from Gossypium harknessii J Hered.

  6. 6.

    Weaver DB, Weaver JB (1977) Inheritance of pollen fertility restoration in cytoplasmic male-sterile upland cotton 1. Crop Sci 17(4):497–499

  7. 7.

    Zhang JF, Stewart JMD (2001) CMS-D8 restoration in cotton is conditioned by one dominant gene. Crop Sci 41(2):283–288

  8. 8.

    Stewart JA (1992) New cytoplasmic male sterile and restorer for cotton. In: Proc. Beltwide Cotton Conf. National Cotton Council, Memphis

  9. 9.

    Wu J, Gong Y, Cui M, Qi T, Guo L, Zhang J, Xing CJE (2011) Molecular characterization of cytoplasmic male sterility conditioned by Gossypium harknessii cytoplasm (CMS-D2) in upland cotton. Euphytica 181(1):17–29

  10. 10.

    Zhang X, Meng Z, Zhou T, Sun G, Shi J, Yu Y, Zhang R, Guo S (2012) Mitochondrial SCAR and SSR markers for distinguishing cytoplasmic male sterile lines from their isogenic maintainer lines in cotton. Plant Breed 131(4):563–570.

  11. 11.

    Zhang JF, Stewart JM (2001) Inheritance and genetic relationships of the D8 and D2–2 restorer genes for cotton cytoplasmic male sterility. Crop Sci.

  12. 12.

    Guo W, Zhang T, Pan J, Kohel RJ (1998) Identification of RAPD marker linked with fertility-restoring gene of cytoplasmic male sterile lines in upland cotton. Chin Sci Bull 43(1):52–54

  13. 13.

    Lan TH, Cook CG, Paterson AH (1999) Identification of a RAPD marker linked to a male fertility restoration gene in cotton (Gossypium hirsutum L.). J Agric Genomics 4:1–5

  14. 14.

    Wu J, Cao X, Guo L, Qi T, Wang H, Tang H, Zhang J, Xing C (2014) Development of a candidate gene marker for Rf 1 based on a PPR gene in cytoplasmic male sterile CMS-D2 Upland cotton. Mol Breed 34(1):231–240

  15. 15.

    Feng C, Mc D, Stewart J, Zhang J (2005) STS markers linked to the Rf1 fertility restorer gene of cotton. Ther Appl Genet.

  16. 16.

    Liu L, Guo W, Zhu X, Zhang T (2003) Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L. Theor Appl Genet 106(3):461–469

  17. 17.

    Yang L (2009) Map-based cloning of fertility restoring gene of CMS and analysis of PPR gene family in cotton. Ph.D. Dissertation, Nanjing Agric Univ

  18. 18.

    Yin J, Guo W, Yang L, Liu L, Zhang T (2006) Physical mapping of the Rf1 fertility-restoring gene to a 100 kb region in cotton. Theor Appl Genet 112(7):1318–1325. doi:

  19. 19.

    Zhang J, Stewart JM (2004) Identification of molecular markers linked to the fertility restorer genes for CMS-D8 in cotton. Crop Sci.

  20. 20.

    Wang F, Stewart JM, Zhang J (2007) Molecular markers linked to the Rf2 fertility restorer gene in cotton. Genome 50(9):818–824. doi:

  21. 21.

    Collard BC, Mackill DJ (2007) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363(1491):557–572

  22. 22.

    Zhou YL, Uzokwe VNE, Zhang CH, Cheng LR, Wang L, Chen K, Gao XQ, Sun Y, Chen JJ, Zhu LH (2011) Improvement of bacterial blight resistance of hybrid rice in China using the gene derived from wild rice. Crop Prot 30(6):637–644

  23. 23.

    Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey M, Hatta MAM, Hinchliffe A, Steed A, Reynolds DJNP (2017) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plans 4(1):23–29

  24. 24.

    Weber JL, David D, Heil J, Fan Y, Zhao C, Marth G (2002) Human diallelic insertion/deletion polymorphisms. Am J Hum Genet 71(4):854–862

  25. 25.

    Hayashi K, Yoshida H, Ashikawa (2006) Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Tagtheor Appl Geneticstheor Angewandte Genetik 113(2):251–260

  26. 26.

    Zhao J, Zhang S, Dong J, Yang T, Mao X, Liu Q, Wang X, Liu B (2017) A novel functional gene associated with cold tolerance at the seedling stage in rice. Plant Biotechnol J 15(9):1141

  27. 27.

    Ye XL, Hu FY, Ren J, Huang SN, Liu WJ, Feng H, Liu ZY (2016) Fine mapping and candidate gene analysis of Brtri1 agene controlling trichome development in Chinese cabbage (Brassica rapa L. ssp pekinensis). Genet Mol Res. doi:

  28. 28.

    Srivastava R, Singh M, Bajaj D, Parida SK (2016) A high-resolution InDel (insertion-deletion) markers-anchored consensus genetic map identifies major QTLs Governing Pod Number and Seed Yield in Chickpea. Front Plant Sci 7:1362.

  29. 29.

    Singh VK, Khan AW, Saxena RK, Sinha P, Kale SM, Parupalli S, Kumar V, Chitikineni A, Suryanarayana V, Sameer Kumar CV (2017) Indel-seq: a fast forward genetics approach for identification of trait associated putative candidate genomic regions and its application in pigeonpea (Cajanus cajan). Plant Biotechnol J 15(7):906–914

  30. 30.

    Zhang H, Wu J, Dai Z, Qin M, Hao L, Ren Y, Li Q, Zhang L (2016) Allelism analysis of BrRfp locus in different restorer lines and map-based cloning of a fertility restorer gene, BrRfp1, for pol CMS in Chinese cabbage (Brassica rapa L.). Tagtheor Appl Genet Angewandte Genetik 130(3):539–547

  31. 31.

    Liu XP, Gao BZ, Han FQ, Fang ZY, Yang LM, Zhuang M, Lv HH, Liu YM, Li ZS, Cai CC (2017) Genetics and fine mapping of a purple leaf gene, BoPr, in ornamental kale (Brassica oleracea L. var. acephala). Bmc Genomics 18(1):230

  32. 32.

    Lv H, Wang Q, Han F, Liu X, Fang Z, Yang L, Zhuang M, Liu Y, Li Z, Zhang Y (2017) Genome-wide indel/SSR scanning reveals significant loci associated with excellent agronomic traits of a cabbage (Brassica oleracea) elite parental line '01–20'. Sci Rep 7:41696. doi:

  33. 33.

    Lu BR, Cai X, Xin J (2009) Efficient indica and japonica rice identification based on the InDel molecular method: Its implication in rice breeding and evolutionary research. Prog Nat Sci 19(10):1241–1252

  34. 34.

    Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ, Ma Z, Shang H, Ma X, Wu J (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33(5):524–530

  35. 35.

    Wang M, Tu L, Yuan D, Zhu, Shen C, Li J, Liu F, Pei L, Wang P, Zhao G, Ye Z, Huang H, Yan F, Ma Y, Zhang L, Liu M, You J, Yang Y, Liu Z, Huang F, Li B, Qiu P, Zhang Q, Zhu L, Jin S, Yang X, Min L, Li G, Chen LL, Zheng H, Lindsey K, Lin Z, Udall JA, Zhang X (2019) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense Nat Genet 51(2):224–229.

  36. 36.

    Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride RC, Chen X, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen ZJ (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33(5):531–537.

  37. 37.

    Wu J, Meng Z, Zhang X, Guo L, Qi T, Wang H, Tang H, Zhang J, Xing C (2017) Development of InDel markers for the restorer gene Rf1 and assessment of their utility for marker-assisted selection in cotton. Euphytica 213(11):251

  38. 38.

    Zhang JF, Stewart JM (2000) Economical and rapid method for extracting cotton genomic DNA. J Cotton Sci 4(3):193–201

  39. 39.

    Rychlik W (2007) OLIGO 7 primer analysis software.Methods in molecular biology. PCR Primer Des 402:35–60.

  40. 40.

    Rai KN, Khairwal IS, Dangaria CJ, Singh AK, Rao ASJE (2009) Seed parent breeding efficiency of three diverse cytoplasmic-nuclear male-sterility systems in pearl millet. Euphytica 3:495

  41. 41.

    Wang F, Yue B, Hu JG, Stewart JM, Zhang JF (2009) A target region amplified polymorphism marker for fertility restorer gene Rf1 and chromosomal localization of rf1 and Rf2 in cotton. Crop Sci 49(5):1602–1608

  42. 42.

    Winter P, Kahl G (1995) Molecular marker technologies for plant improvement. World J Microbiol Biotechnol 11(4):438–448

  43. 43.

    Gut IG (2001) Automation in genotyping of single nucleotide polymorphisms. Hum Mutat 17(6):475–492. doi:

  44. 44.

    Paterson AH, Wendel JF, Heidrun G, Hui G, Jerry J, Dianchuan J, Danny L, Showmaker KC, Shengqiang S, Joshua U (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492(7429):423–427

  45. 45.

    Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S (2012) The draft genome of a diploid cotton Gossypium raimondii Nat Genet 44(10):1098–1103.

  46. 46.

    Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27(9):522–530

  47. 47.

    Boopathi Manikanda N (2013) Genetic mapping and marker assisted selection. Springer, Berlin

  48. 48.

    Boopathi NM, Sathish S, Kavitha P, Dachinamoorthy P, Ravikesavan R (2015) Molecular breeding for genetic improvement of cotton (Gossypium spp.). In: Al-Khayri JM (ed) Advances in plant breeding strategies: breeding, biotechnology and molecular tools, pp 613–645. Springer, Berlin,

Download references

Author information

Correspondence to Chaozhu Xing or Jianyong Wu.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Zhu, H., Zhang, M. et al. Development and utilization of an InDel marker linked to the fertility restorer genes of CMS-D8 and CMS-D2 in cotton. Mol Biol Rep 47, 1275–1282 (2020) doi:10.1007/s11033-019-05240-5

Download citation


  • Cotton
  • Rf 2
  • Rf 1
  • InDel
  • CMS-D8
  • CMS-D2
  • MAS