Molecular Biology Reports

, Volume 47, Issue 2, pp 1413–1434 | Cite as

RNA: interactions drive functionalities

  • Xiaofeng DaiEmail author
  • Shuo Zhang
  • Kathia Zaleta-Rivera


RNA is produced from the majority of human genomic sequences, although only a relatively small portion of these transcripts has known functions. Diverse RNA species interact with RNA, DNA, proteins, lipids, and metabolites to form intricate molecular networks. In this review, we attempt to delineate diverse RNA functions by interaction types between RNA and other macromolecules. Through such interactions RNAs participate in essentially every major molecular function and process, including information flow and storage, environment sensing, signal transduction, and gene regulation at transcriptional and posttranscriptional levels. Through such interactions, RNAs promote or inhibit diverse biological processes, and act as catalyzer or quencher to modulate the pace of these progresses. Alterations and personal variations of these interactions are mechanistically coupled with disease etiology and phenotypical variations for clinical use.


RNA interaction Non-coding RNA Functionalities 


Author contributions

XFD conceptualised the ideas, conducted the literature search, prepared the figures, tables, and drafted the manuscript. SZ and KZR contributed to literature search, analysis and preparation of figures and tables. All authors have read and approved the manuscript.


This study was funded by the National Natural Science Foundation of China (Grant No. 81972789), the National Science and Technology Major Project (Grant No. 2018ZX10302205-004-002), the Six Talent Peaks Project in Jiangsu Province (Grant No. SWYY-128), Technology Development Funding of Wuxi (Grant No. WX18IVJN017), Major Project of Science and Technology in Henan Province (Grant No.161100311400). These funding sources have no role in the writing of the manuscript or the decision to submit it for publication.

Compliance with ethical standards

Conflict of interest

The authors declares that they have no conflict of interest.

Supplementary material

11033_2019_5230_MOESM1_ESM.pdf (110 kb)
Supplementary material 1 Schematic representations of other types of RNA-macromolecule interactions with typical examples.(A) RNA-lipid interaction: interactions between the lncRNA LINK-A and the phospholipid PI(3,4,5)P3; (B) RNA-metaboliteinteraction: riboswitch (PDF 110 kb)


  1. 1.
    Djebali S et al (2012) Landscape of transcription in human cells. Nature 489(7414):101–108PubMedPubMedCentralGoogle Scholar
  2. 2.
    Xie ZY et al (2019) Long non-coding RNA: the functional regulator of mesenchymal stem cells. World J Stem Cells 11(3):167–179PubMedPubMedCentralGoogle Scholar
  3. 3.
    Kok FO, Baker AH (2019) The function of long non-coding RNAs in vascular biology and disease. Vascul Pharmacol 114:23–30PubMedGoogle Scholar
  4. 4.
    Natoli G, Andrau JC (2012) Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet 46:1–19PubMedGoogle Scholar
  5. 5.
    Zhou F et al (2019) Regulation of long non-coding RNAs and circular RNAs in spermatogonial stem cells. Reproduction. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lin A et al (2016) The LINK-A lncRNA activates normoxic HIF1alpha signalling in triple-negative breast cancer. Nat Cell Biol 18(2):213–224PubMedPubMedCentralGoogle Scholar
  7. 7.
    Pamudurti NR et al (2017) Translation of CircRNAs. Mol Cell 66(1):9–21PubMedPubMedCentralGoogle Scholar
  8. 8.
    Engreitz JM et al (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341(6147):1237973PubMedPubMedCentralGoogle Scholar
  9. 9.
    Koziol MJ, Rinn JL (2010) RNA traffic control of chromatin complexes. Curr Opin Genet Dev 20(2):142–148PubMedPubMedCentralGoogle Scholar
  10. 10.
    Wang KC et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341):120–124PubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang Y et al (2015) The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell 16(4):413–425PubMedGoogle Scholar
  12. 12.
    Jividen K, Li H (2014) Chimeric RNAs generated by intergenic splicing in normal and cancer cells. Genes Chromosom Cancer 53(12):963–971PubMedGoogle Scholar
  13. 13.
    Qi X et al (2012) RNA/DNA hybrid binding affinity determines telomerase template-translocation efficiency. EMBO J 31(1):150–161PubMedGoogle Scholar
  14. 14.
    Skourti-Stathaki K, Proudfoot NJ (2014) A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 28(13):1384–1396PubMedPubMedCentralGoogle Scholar
  15. 15.
    Sun Q et al (2013) R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science 340(6132):619–621PubMedPubMedCentralGoogle Scholar
  16. 16.
    Li Y, Syed J, Sugiyama H (2016) RNA-DNA triplex formation by long noncoding RNAs. Cell Chem Biol 23(11):1325–1333PubMedGoogle Scholar
  17. 17.
    Plum GE (2015) Thermodynamics of oligonucleotide triple helices. Biopolymers 44(3):241–256Google Scholar
  18. 18.
    Simon MD (2013) Capture hybridization analysis of RNA targets (CHART). Curr Protoc Mol Biol 101(1):21–25Google Scholar
  19. 19.
    Zhu Y et al (2018) Long non-coding RNA FOXD2-AS1 contributes to colorectal cancer proliferation through its interaction with microRNA-185-5p. Cancer Sci 109(7):2235–2242PubMedPubMedCentralGoogle Scholar
  20. 20.
    Ding Y et al (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505(7485):696–700PubMedGoogle Scholar
  21. 21.
    Underwood JG et al (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 7(12):995–1001PubMedPubMedCentralGoogle Scholar
  22. 22.
    Feigon J (2015) Back to the future of RNA structure. RNA 21(4):611–612PubMedPubMedCentralGoogle Scholar
  23. 23.
    Grosswendt S et al (2014) Unambiguous identification of miRNA:target site interactions by different types of ligation reactions. Mol Cell 54(6):1042–1054PubMedPubMedCentralGoogle Scholar
  24. 24.
    Sugimoto Y et al (2015) hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519(7544):491–494PubMedPubMedCentralGoogle Scholar
  25. 25.
    Helwak A, Tollervey D (2014) Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH). Nat Protoc 9(3):711–728PubMedPubMedCentralGoogle Scholar
  26. 26.
    Engreitz JM et al (2014) RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent Pre-mRNAs and chromatin sites. Cell 159(1):188–199PubMedPubMedCentralGoogle Scholar
  27. 27.
    Sharma E et al (2016) Global mapping of human RNA-RNA interactions. Mol Cell 62(4):618–626PubMedGoogle Scholar
  28. 28.
    Lu Z et al (2016) RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165(5):1267–1279PubMedPubMedCentralGoogle Scholar
  29. 29.
    Nguyen TC et al (2016) Mapping RNA-RNA interactome and RNA structure in vivo by MARIO. Nat Commun 7:12023PubMedPubMedCentralGoogle Scholar
  30. 30.
    Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14(7):447–459PubMedPubMedCentralGoogle Scholar
  31. 31.
    Gupta RA et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076PubMedPubMedCentralGoogle Scholar
  32. 32.
    Liu J et al (2018) Long noncoding RNA PANDAR blocks CDKN1A gene transcription by competitive interaction with p53 protein in gastric cancer. Cell Death Dis 9(2):168PubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhao J et al (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40(6):939–953PubMedPubMedCentralGoogle Scholar
  34. 34.
    Moore MJ et al (2014) Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat Protoc 9(2):263–293PubMedPubMedCentralGoogle Scholar
  35. 35.
    Spitzer J et al (2014) PAR-CLIP (photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation): a step-by-step protocol to the transcriptome-wide identification of binding sites of RNA-binding proteins. Methods Enzymol 539:113–161PubMedPubMedCentralGoogle Scholar
  36. 36.
    Tsai BP et al (2011) Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Mol Cell Proteomics 10(4):M110PubMedPubMedCentralGoogle Scholar
  37. 37.
    McHugh CA et al (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521(7551):232–236PubMedPubMedCentralGoogle Scholar
  38. 38.
    Ramanathan M et al (2018) RNA-protein interaction detection in living cells. Nat Methods 15(3):207–212PubMedPubMedCentralGoogle Scholar
  39. 39.
    Campbell ZT et al (2012) Cooperativity in RNA-protein interactions: global analysis of RNA binding specificity. Cell Rep 1(5):570–581PubMedPubMedCentralGoogle Scholar
  40. 40.
    Lambert N et al (2014) RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. Mol Cell 54(5):887–900PubMedPubMedCentralGoogle Scholar
  41. 41.
    Martin L et al (2012) Systematic reconstruction of RNA functional motifs with high-throughput microfluidics. Nat Methods 9(12):1192–1194PubMedGoogle Scholar
  42. 42.
    Tome JM et al (2014) Comprehensive analysis of RNA-protein interactions by high-throughput sequencing-RNA affinity profiling. Nat Methods 11(6):683–688PubMedPubMedCentralGoogle Scholar
  43. 43.
    Buenrostro JD et al (2014) Quantitative analysis of RNA-protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes. Nat Biotechnol 32(6):562–568PubMedPubMedCentralGoogle Scholar
  44. 44.
    Dorobantu CM et al (2015) Modulation of the host lipid landscape to promote RNA virus replication: the picornavirus encephalomyocarditis virus converges on the pathway used by hepatitis C virus. PLoS Pathog 11(9):e1005185PubMedPubMedCentralGoogle Scholar
  45. 45.
    Lin A et al (2017) The LINK-A lncRNA interacts with PtdIns(3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat Cell Biol 19(3):238–251PubMedPubMedCentralGoogle Scholar
  46. 46.
    Mecham JO, McHolland LE (2010) Measurement of bluetongue virus binding to a mammalian cell surface receptor by an in situ immune fluorescent staining technique. J Virol Methods 165(1):112–115PubMedGoogle Scholar
  47. 47.
    Xing Z et al (2014) lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell 159(5):1110–1125PubMedPubMedCentralGoogle Scholar
  48. 48.
    Wang P et al (2014) The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344(6181):310–313PubMedGoogle Scholar
  49. 49.
    Arun G et al (2012) mrhl RNA, a long noncoding RNA, negatively regulates Wnt signaling through its protein partner Ddx5/p68 in mouse spermatogonial cells. Mol Cell Biol 32(15):3140–3152PubMedPubMedCentralGoogle Scholar
  50. 50.
    Liu B et al (2015) A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 27(3):370–381PubMedGoogle Scholar
  51. 51.
    Memczak S et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338PubMedGoogle Scholar
  52. 52.
    Ashwal-Fluss R et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66PubMedGoogle Scholar
  53. 53.
    Zhang XO et al (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147PubMedGoogle Scholar
  54. 54.
    Tang Q, Chen Z, Zhao L (2019) Circular RNA hsa_circ_0000515 acts as a miR-326 sponge to promote cervical cancer progression through up-regulation of ELK1. Aging 11(22):9982–9999PubMedPubMedCentralGoogle Scholar
  55. 55.
    Wang X et al (2019) Circular RNA TTN acts as a miR-432 sponge to facilitate proliferation and differentiation of myoblasts via the IGF2/PI3K/AKT signaling pathway. Mol Ther Nucleic Acids 18:966–980PubMedPubMedCentralGoogle Scholar
  56. 56.
    Zhang X et al (2019) Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer 18(1):20PubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhang PF et al (2019) Circular RNA circTRIM33-12 acts as the sponge of MicroRNA-191 to suppress hepatocellular carcinoma progression. Mol Cancer 18(1):105PubMedPubMedCentralGoogle Scholar
  58. 58.
    Du WW et al (2017) Identifying and characterizing circRNA-protein interaction. Theranostics 7(17):4183–4191PubMedPubMedCentralGoogle Scholar
  59. 59.
    Mo D et al (2019) A universal approach to investigate circRNA protein coding function. Sci Rep 9(1):11684PubMedPubMedCentralGoogle Scholar
  60. 60.
    Li Z, Nagy PD (2011) Diverse roles of host RNA binding proteins in RNA virus replication. RNA Biol 8(2):305–315PubMedPubMedCentralGoogle Scholar
  61. 61.
    Jiang J et al (2018) Potato spindle tuber viroid modulates its replication through a direct interaction with a splicing regulator. J Virol 92(20):e01004PubMedPubMedCentralGoogle Scholar
  62. 62.
    Pan S et al (2019) A seed motif for target RNA capture enables efficient immune defence by a type III-B CRISPR-Cas system. RNA Biol 16(9):1166–1178PubMedGoogle Scholar
  63. 63.
    Zhang T et al (2019) Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnol J 17(7):1185–1187PubMedPubMedCentralGoogle Scholar
  64. 64.
    Majumdar S, Terns MP (2019) CRISPR RNA-guided DNA cleavage by reconstituted Type I-A immune effector complexes. Extremophiles 23(1):19–33PubMedGoogle Scholar
  65. 65.
    Suzuki T, Suzuki T (2014) A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Res 42(11):7346–7357PubMedPubMedCentralGoogle Scholar
  66. 66.
    Kudla G et al (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc Natl Acad Sci USA 108(24):10010–10015PubMedGoogle Scholar
  67. 67.
    Aw JG et al (2016) In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol Cell 62(4):603–617PubMedGoogle Scholar
  68. 68.
    Chu C, Quinn J, Chang HY (2012) Chromatin isolation by RNA purification (ChIRP). J Vis Exp 61:e3912Google Scholar
  69. 69.
    Sridhar B et al (2017) Systematic mapping of RNA-chromatin interactions in vivo. Curr Biol 27(4):610–612PubMedGoogle Scholar
  70. 70.
    Niranjanakumari S et al (2002) Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 26(2):182–190PubMedGoogle Scholar
  71. 71.
    Keene JD, Komisarow JM, Friedersdorf MB (2006) RIP-chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 1(1):302–307PubMedGoogle Scholar
  72. 72.
    Ule J et al (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302(5648):1212–1215PubMedGoogle Scholar
  73. 73.
    Huppertz I et al (2014) iCLIP: protein-RNA interactions at nucleotide resolution. Methods 65(3):274–287PubMedPubMedCentralGoogle Scholar
  74. 74.
    Hogg JR, Collins K (2007) RNA-based affinity purification reveals 7SK RNPs with distinct composition and regulation. RNA 13(6):868–880PubMedPubMedCentralGoogle Scholar
  75. 75.
    Beach DL, Keene JD (2008) Ribotrap: targeted purification of RNA-specific RNPs from cell lysates through immunoaffinity precipitation to identify regulatory proteins and RNAs. Methods Mol Biol 419:69–91PubMedGoogle Scholar
  76. 76.
    Granneman S et al (2009) Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc Natl Acad Sci USA 106(24):9613–9618PubMedGoogle Scholar
  77. 77.
    Slobodin B, Gerst JE (2011) RaPID: an aptamer-based mRNA affinity purification technique for the identification of RNA and protein factors present in ribonucleoprotein complexes. Methods Mol Biol 714:387–406PubMedGoogle Scholar
  78. 78.
    Ray D et al (2009) Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol 27(7):667–670PubMedGoogle Scholar
  79. 79.
    Soukup JK, Soukup GA (2009) Identification of metabolite-riboswitch interactions using nucleotide analog interference mapping and suppression. Methods Mol Biol 540:193–206PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Wuxi School of MedicineJiangnan UniversityWuxiChina
  2. 2.School of BiotechnologyJiangnan UniversityWuxiChina
  3. 3.Department of BioengineeringUniversity of California San DiegoSan DiegoUSA

Personalised recommendations