Advertisement

Molecular Biology Reports

, Volume 47, Issue 2, pp 1491–1498 | Cite as

Highly efficient CRISPR-targeting of the murine Hipp11 intergenic region supports inducible human transgene expression

  • Jill Browning
  • Michael Rooney
  • Emily Hams
  • Satoru Takahashi
  • Seiya Mizuno
  • Fumihiro Sugiyama
  • Padraic G. Fallon
  • Vincent P. KellyEmail author
Short Communication

Abstract

Safe harbor loci allow predicable integration of a transgene into the genome without perturbing endogenous gene activity and for decades have been exploited in the mouse to investigate gene function, generate humanised models and create tissue specific reporter and Cre recombinase expressing lines. Herein, we show that the murine Hipp11 intergenic region can facilitate highly efficient integration of a large transgene—the human CD1A promoter and coding region—by means of CRISPR-Cas9 mediated homology directed repair. The data shows that the single copy human CD1A transgene is faithfully expressed in an inducible manner in homozygous animals in both macrophage and dendritic cells. Our results validate the Hipp11 intergenic region as being a highly amenable target site for functional transgene integration in mouse.

Keywords

Intergenic site 2 Isg2 Hipp11 H11 Safe-harbor locus Humanized mice CRISPR-Cas9 CD1A 

Notes

Acknowledgements

J.B. is a Postgraduate Research Scholar funded by the Irish Research Council under the Government of Ireland Programme (GOIPG/2015/3729), M.R. was a Masters of Immunology Student at Trinity College Dublin. This work was supported by the National Children Research Centre. E.H. is a postdoctoral researcher funded by an SFI starting investigator research grant (15/SIRG/3473).

Author Contributions

VPK and PGF conceived and designed the study. JB, MR, EH, SM, and FS performed the experiments. JB, MR, EH, SM, FS, VPK and PGF interpreted the results. JB and VPK wrote the manuscript.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

Supplementary material

11033_2019_5204_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)
11033_2019_5204_MOESM2_ESM.pptx (1.2 mb)
Supplementary material 2 Supplementary Figure 1. LCs were isolated from ear skin of WT mice and homozygous mH11hCD1a mice, either untreated or administered Aldara cream (containing imiquimod) to the ear for 6 consecutive days. Cells were gated on LIVE/DEAD aqua -ve cells, CD45+ve and CD11c +ve cells and presented as huCD1a-PB vs CD207-PE (PPTX 1219 kb)

References

  1. 1.
    Berger MF, Badis G, Gehrke AR, Talukder S, Philippakis AA, Pena-Castillo L, Alleyne TM, Mnaimneh S, Botvinnik OB, Chan ET, Khalid F, Zhang W, Newburger D, Jaeger SA, Morris QD, Bulyk ML, Hughes TR (2008) Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 133(7):1266–1276PubMedPubMedCentralGoogle Scholar
  2. 2.
    Beyer M, Mallmann MR, Xue J, Staratschek-Jox A, Vorholt D, Krebs W, Sommer D, Sander J, Mertens C, Nino-Castro A, Schmidt SV, Schultze JL (2012) High-resolution transcriptome of human macrophages. PLoS ONE 7(9):e45466PubMedPubMedCentralGoogle Scholar
  3. 3.
    Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J (1992) GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360(6401):258–261PubMedGoogle Scholar
  4. 4.
    Chu VT, Weber T, Graf R, Sommermann T, Petsch K, Sack U, Volchkov P, Rajewsky K, Kuhn R (2016) Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol 16:4PubMedPubMedCentralGoogle Scholar
  5. 5.
    Evans V, Hatzopoulos A, Aird WC, Rayburn HB, Rosenberg RD, Kuivenhoven JA (2000) Targeting the Hprt locus in mice reveals differential regulation of Tie2 gene expression in the endothelium. Physiol Genomics 2(2):67–75PubMedGoogle Scholar
  6. 6.
    Felio K, Nguyen H, Dascher CC, Choi HJ, Li S, Zimmer MI, Colmone A, Moody DB, Brenner MB, Wang CR (2009) CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice. J Exp Med 206(11):2497–2509PubMedPubMedCentralGoogle Scholar
  7. 7.
    Geissmann F, Prost C, Monnet JP, Dy M, Brousse N, Hermine O (1998) Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J Exp Med 187(6):961–966PubMedPubMedCentralGoogle Scholar
  8. 8.
    Guillot PV, Liu L, Kuivenhoven JA, Guan J, Rosenberg RD, Aird WC (2000) Targeting of human eNOS promoter to the Hprt locus of mice leads to tissue-restricted transgene expression. Physiol Genomics 2(2):77–83PubMedGoogle Scholar
  9. 9.
    Hams E, Saunders SP, Cummins EP, O’Connor A, Tambuwala MT, Gallagher WM, Byrne A, Campos-Torres A, Moynagh PM, Jobin C, Taylor CT, Fallon PG (2011) The hydroxylase inhibitor dimethyloxallyl glycine attenuates endotoxic shock via alternative activation of macrophages and IL-10 production by B1 cells. Shock 36(3):295–302PubMedPubMedCentralGoogle Scholar
  10. 10.
    Heaney JD, Rettew AN, Bronson SK (2004) Tissue-specific expression of a BAC transgene targeted to the Hprt locus in mouse embryonic stem cells. Genomics 83(6):1072–1082PubMedGoogle Scholar
  11. 11.
    Hippenmeyer S, Youn YH, Moon HM, Miyamichi K, Zong H, Wynshaw-Boris A, Luo L (2010) Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68(4):695–709PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hohenstein P, Slight J, Ozdemir DD, Burn SF, Berry R, Hastie ND (2008) High-efficiency Rosa26 knock-in vector construction for Cre-regulated overexpression and RNAi. Pathogenetics 1(1):3PubMedPubMedCentralGoogle Scholar
  13. 13.
    Ichise H, Ichise T, Sasanuma H, Yoshida N (2014) The Cd6 gene as a permissive locus for targeted transgenesis in the mouse. Genesis 52(5):440–450PubMedGoogle Scholar
  14. 14.
    Irion S, Luche H, Gadue P, Fehling HJ, Kennedy M, Keller G (2007) Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol 25(12):1477–1482PubMedGoogle Scholar
  15. 15.
    Kasparek P, Krausova M, Haneckova R, Kriz V, Zbodakova O, Korinek V, Sedlacek R (2014) Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett 588(21):3982–3988PubMedGoogle Scholar
  16. 16.
    Kisseberth WC, Brettingen NT, Lohse JK, Sandgren EP (1999) Ubiquitous expression of marker transgenes in mice and rats. Dev Biol 214(1):128–138PubMedGoogle Scholar
  17. 17.
    Kim JH, Hu Y, Yongqing T et al (2016) CD1a on Langerhans cells controls inflammatory skin disease. Nat Immunol 17(10):1159–1166.  https://doi.org/10.1038/ni.3523 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kobayashi C, Shiina T, Tokioka A, Hattori Y, Komori T, Kobayashi-Miura M, Takizawa T, Takahara K, Inaba K, Inoko H, Takeya M, Dranoff G, Sugita M (2012) GM-CSF-independent CD1a expression in epidermal Langerhans cells: evidence from human CD1A genome-transgenic mice. J Invest Dermatol 132(1):241–244PubMedGoogle Scholar
  19. 19.
    Kong Q, Hai T, Ma J, Huang T, Jiang D, Xie B, Wu M, Wang J, Song Y, Wang Y, He Y, Sun J, Hu K, Guo R, Wang L, Zhou Q, Mu Y, Liu Z (2014) Rosa26 locus supports tissue-specific promoter driving transgene expression specifically in pig. PLoS ONE 9(9):e107945PubMedPubMedCentralGoogle Scholar
  20. 20.
    Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, Malani N, Anguela XM, Sharma R, Ivanciu L, Murphy SL, Finn JD, Khazi FR, Zhou S, Paschon DE, Rebar EJ, Bushman FD, Gregory PD, Holmes MC, High KA (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475(7355):217–221PubMedPubMedCentralGoogle Scholar
  21. 21.
    Li S, Flisikowska T, Kurome M, Zakhartchenko V, Kessler B, Saur D, Kind A, Wolf E, Flisikowski K, Schnieke A (2014) Dual fluorescent reporter pig for Cre recombination: transgene placement at the ROSA26 locus. PLoS ONE 9(7):e102455PubMedPubMedCentralGoogle Scholar
  22. 22.
    Li X, Yang Y, Bu L, Guo X, Tang C, Song J, Fan N, Zhao B, Ouyang Z, Liu Z, Zhao Y, Yi X, Quan L, Liu S, Yang Z, Ouyang H, Chen YE, Wang Z, Lai L (2014) Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Res 24(4):501–504PubMedPubMedCentralGoogle Scholar
  23. 23.
    Li YS, Meng RR, Chen X, Shang CL, Li HB, Zhang TJ, Long HY, Li HQ, Wang YJ, Wang FC (2019) Generation of H11-albumin-rtTA transgenic mice: a tool for inducible gene expression in the liver. G3 (Bethesda) 9(2):591–599Google Scholar
  24. 24.
    Ma Y, Yu L, Pan S, Gao S, Chen W, Zhang X, Dong W, Li J, Zhou R, Huang L, Han Y, Bai L, Zhang L, Zhang L (2017) CRISPR/Cas9-mediated targeting of the Rosa26 locus produces Cre reporter rat strains for monitoring Cre-loxP-mediated lineage tracing. FEBS J 284(19):3262–3277PubMedGoogle Scholar
  25. 25.
    Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, van der Bourg A, Niino Y, Egolf L, Monetti C, Gu H, Mills M, Cheng A, Tasic B, Nguyen TN, Sunkin SM, Benucci A, Nagy A, Miyawaki A, Helmchen F, Empson RM, Knopfel T, Boyden ES, Reid RC, Carandini M, Zeng H (2015) Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85(5):942–958PubMedPubMedCentralGoogle Scholar
  26. 26.
    Mao X, Fujiwara Y, Chapdelaine A, Yang H, Orkin SH (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97(1):324–326PubMedGoogle Scholar
  27. 27.
    Mao X, Fujiwara Y, Orkin SH (1999) Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc Natl Acad Sci USA 96(9):5037–5042PubMedGoogle Scholar
  28. 28.
    Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ, Buchman S, Chen CY, Chou A, Ienasescu H, Lim J, Shyr C, Tan G, Zhou M, Lenhard B, Sandelin A, Wasserman WW (2014) JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res 42(Database issue):D142–D147PubMedGoogle Scholar
  29. 29.
    Miyazaki S, Miyazaki T, Tashiro F, Yamato E, Miyazaki J (2005) Development of a single-cassette system for spatiotemporal gene regulation in mice. Biochem Biophys Res Commun 338(2):1083–1088PubMedGoogle Scholar
  30. 30.
    Nyabi O, Naessens M, Haigh K, Gembarska A, Goossens S, Maetens M, De Clercq S, Drogat B, Haenebalcke L, Bartunkova S, De Vos I, De Craene B, Karimi M, Berx G, Nagy A, Hilson P, Marine JC, Haigh JJ (2009) Efficient mouse transgenesis using Gateway-compatible ROSA26 locus targeting vectors and F1 hybrid ES cells. Nucleic Acids Res 37(7):e55PubMedPubMedCentralGoogle Scholar
  31. 31.
    Palais G, Nguyen Dinh Cat A, Friedman H, Panek-Huet N, Millet A, Tronche F, Gellen B, Mercadier JJ, Peterson A, Jaisser F (2009) Targeted transgenesis at the HPRT locus: an efficient strategy to achieve tightly controlled in vivo conditional expression with the tet system. Physiol Genomics 37(2):140–146PubMedGoogle Scholar
  32. 32.
    Papapetrou EP, Schambach A (2016) Gene insertion into genomic safe harbors for human gene therapy. Mol Ther 24(4):678–684PubMedPubMedCentralGoogle Scholar
  33. 33.
    Quadros RM, Harms DW, Ohtsuka M, Gurumurthy CB (2015) Insertion of sequences at the original provirus integration site of mouse ROSA26 locus using the CRISPR/Cas9 system. FEBS Open Bio 5:191–197PubMedPubMedCentralGoogle Scholar
  34. 34.
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ruan J, Li H, Xu K, Wu T, Wei J, Zhou R, Liu Z, Mu Y, Yang S, Ouyang H, Yanru Chen-Tsai R, Li K (2015) Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Sci Rep 5:14253PubMedPubMedCentralGoogle Scholar
  36. 36.
    Sadelain M, Papapetrou EP, Bushman FD (2012) Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer 12(1):51–58Google Scholar
  37. 37.
    Schmitz F, Burtscher I, Stauber M, Gossler A, Lickert H (2017) A novel Cre-inducible knock-in ARL13B-tRFP fusion cilium reporter. Genesis 55(11):e23073Google Scholar
  38. 38.
    Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71PubMedGoogle Scholar
  39. 39.
    Strathdee D, Ibbotson H, Grant SG (2006) Expression of transgenes targeted to the Gt(ROSA)26Sor locus is orientation dependent. PLoS ONE 1:e4PubMedPubMedCentralGoogle Scholar
  40. 40.
    Tasic B, Hippenmeyer S, Wang C, Gamboa M, Zong H, Chen-Tsai Y, Luo L (2011) Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc Natl Acad Sci USA 108(19):7902–7907PubMedGoogle Scholar
  41. 41.
    Tasic B, Miyamichi K, Hippenmeyer S, Dani VS, Zeng H, Joo W, Zong H, Chen-Tsai Y, Luo L (2012) Extensions of MADM (mosaic analysis with double markers) in mice. PLoS ONE 7(3):e33332PubMedPubMedCentralGoogle Scholar
  42. 42.
    Vivian JL, Klein WH, Hasty P (1999) Temporal, spatial and tissue-specific expression of a myogenin-lacZ transgene targeted to the Hprt locus in mice. Biotechniques 27(1):154–162PubMedGoogle Scholar
  43. 43.
    Wang M, Sun Z, Zou Z, Ding F, Li L, Wang H, Zhao C, Li N, Dai Y (2018) Efficient targeted integration into the bovine Rosa26 locus using TALENs. Sci Rep 8(1):10385PubMedPubMedCentralGoogle Scholar
  44. 44.
    Wu M, Wei C, Lian Z, Liu R, Zhu C, Wang H, Cao J, Shen Y, Zhao F, Zhang L, Mu Z, Wang Y, Wang X, Du L, Wang C (2016) Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system. Sci Rep 6:24360PubMedPubMedCentralGoogle Scholar
  45. 45.
    Yang D, Song J, Zhang J, Xu J, Zhu T, Wang Z, Lai L, Chen YE (2016) Identification and characterization of rabbit ROSA26 for gene knock-in and stable reporter gene expression. Sci Rep 6:25161PubMedPubMedCentralGoogle Scholar
  46. 46.
    Yang GS, Banks KG, Bonaguro RJ, Wilson G, Dreolini L, de Leeuw CN, Liu L, Swanson DJ, Goldowitz D, Holt RA, Simpson EM (2009) Next generation tools for high-throughput promoter and expression analysis employing single-copy knock-ins at the Hprt1 locus. Genomics 93(3):196–204PubMedGoogle Scholar
  47. 47.
    Yu Y, Wang Y, Tong Q, Liu X, Su F, Quan F, Guo Z, Zhang Y (2013) A site-specific recombinase-based method to produce antibiotic selectable marker free transgenic cattle. PLoS ONE 8(5):e62457PubMedPubMedCentralGoogle Scholar
  48. 48.
    Zambrowicz BP, Imamoto A, Fiering S, Herzenberg LA, Kerr WG, Soriano P (1997) Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci USA 94(8):3789–3794PubMedGoogle Scholar
  49. 49.
    Zeng H, Horie K, Madisen L, Pavlova MN, Gragerova G, Rohde AD, Schimpf BA, Liang Y, Ojala E, Kramer F, Roth P, Slobodskaya O, Dolka I, Southon EA, Tessarollo L, Bornfeldt KE, Gragerov A, Pavlakis GN, Gaitanaris GA (2008) An inducible and reversible mouse genetic rescue system. PLoS Genet 4(5):e1000069PubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhu F, Gamboa M, Farruggio AP, Hippenmeyer S, Tasic B, Schule B, Chen-Tsai Y, Calos MP (2014) DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Res 42(5):e34PubMedGoogle Scholar
  51. 51.
    Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L (2005) Mosaic analysis with double markers in mice. Cell 121(3):479–492PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Biochemistry& ImmunologyTrinity Biomedical Sciences Institute, Trinity College DublinDublin 2Ireland
  2. 2.School of MedicineTrinity Biomedical Sciences Institute, Trinity College DublinDublin 2Ireland
  3. 3.1-1-1 Tennodai Laboratory Animal Resource CenterUniversity of TsukubaTsukubaJapan

Personalised recommendations