Sequence characteristics of Medicago truncatula cyclophilin family members and function analysis of MsCYP20-3B involved in axillary shoot development

  • Lingqiao Ge
  • Kun Zhang
  • Xiaohui Cao
  • Yinyin Weng
  • Bei Liu
  • Peisheng Mao
  • Xiqing MaEmail author
Original Article


Cyclophilins (CYPs) belonging to the immunophilin family are present in all organisms and widely distributed in various cells associated with the activity of peptidyl-prolyl cis/trans isomerase. Plant CYPs are members of a multi-gene family and are involved in a series of biological processes. However, little is known about their structure, evolution, developmental expression and functional analysis in Medicago truncatula. In this study, a total of 33 CYP genes were identified and found to be unevenly distributed on eight chromosomes. Among them, 21 are single-domain and 12 are multi-domain proteins, and most were predicted to be localized in the cytosol, nucleus or chloroplast. Phylogenetic and gene structure analysis revealed seven segmental gene pairs, indicating that segmental duplication probably made a large contribution to the expansion of MtCYP gene family. Furthermore, gene expression analysis revealed that about 10 MtCYP genes (were) highly expressed involved in vegetative and reproduction tissues in M. truncatula, and MsCYP20-3B was mainly upregulated in stems, leaves and flower buds in alfalfa (Medicago sativa). Overexpression of MsCYP20-3B was shown to regulate axillary shoot development associated with higher jasmonic acid and abscisic acid contents in M. truncatula. Our study suggests the importance of the CYP genes family in development, reproduction and stress responses, and provides a reference for future studies and application of CYP genes for alfalfa genetic improvement.


Cyclophilin genes Medicago truncatula Phylogenetic analysis Gene expression pattern Transgenic plants Alfalfa 



This work was supported by the Fundamental Research Funds for the Central Universities (NSFC, 2018QC144).

Author contributions

LG designed and performed the experiments; LG and KZ analyzed the data and wrote the manuscript; XM and PM designed and supervised the working and edited the manuscript. XC, YW and BL involved in performing the experiments. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

11033_2019_5183_MOESM1_ESM.xlsx (19 kb)
Supplementary file 1 (XLSX 20 kb)
11033_2019_5183_MOESM2_ESM.xlsx (28 kb)
Supplementary file 2 (XLSX 28 kb)
11033_2019_5183_MOESM3_ESM.docx (23 kb)
Supplementary file 3 (DOCX 24 kb)
11033_2019_5183_MOESM4_ESM.jpg (2.9 mb)
Supplementary file 4 Fig. S1 The alignment of amino acid sequences of MtCYP20-3B, MsCYP20-3B and AtCYP20-3 using DNAman software (JPG 2999 kb)
11033_2019_5183_MOESM5_ESM.xlsx (10 kb)
Supplementary file 5 (XLSX 11 kb)


  1. 1.
    Handschumacher R, Harding M, Rice J, Drugge R, Speicher D (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226:544–547PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Barbosa dos Santos I, Park SW (2019) Versatility of Cyclophilins in plant growth and survival: a case study in Arabidopsis. Biomolecules 9:20PubMedCentralCrossRefGoogle Scholar
  3. 3.
    Faure JD, Gingerich D, Howell SH (1998) An Arabidopsis immunophilin, AtFKBP12, binds to AtFIP37 (FKBP interacting protein) in an interaction that is disrupted by FK506. Plant J 15:783–789PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Rycyzyn MA, Clevenger CV (2002) The intranuclear prolactin/cyclophilin B complex as a transcriptional inducer. Proc Natl Acad Sci USA 99:6790–6795PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Brazin KN, Mallis RJ, Fulton DB, Andreotti AH (2002) Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A. Proc Natl Acad Sci USA 99:1899–1904PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Gullerova M, Barta A, Lorkovic ZJ (2006) AtCyp59 is a multidomain cyclophilin from Arabidopsis thaliana that interacts with SR proteins and the C-terminal domain of the RNA polymerase II. RNA 12:631–643PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Li M, Ma X, Chiang YH, Yadeta K, Ding P, Dong L, Zhao Y, Li X, Yu Y, Zhang L (2014) Proline isomerization of the immune receptor-interacting protein RIN4 by a cyclophilin inhibits effector-triggered immunity in Arabidopsis. Cell Host Microbe 16:473–483PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ma X, Song L, Yang Y, Liu D (2013) A gain-of-function mutation in the ROC1 gene alters plant architecture in Arabidopsis. New Phytol 197:751–762PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Romano PGN, Horton P, Gray JE (2004) The Arabidopsis cyclophilin gene family. Plant Physiol 134:1268–1282PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Gasser CS, Gunning DA, Budelier KA, Brown SM (1990) Structure and expression of cytosolic cyclophilin/peptidyl-prolyl cis-trans isomerase of higher plants and production of active tomato cyclophilin in Escherichia coli. Proc Natl Acad Sci USA 87:9519–9523PubMedCrossRefGoogle Scholar
  11. 11.
    Buchholz WG, Harris-Haller L, DeRose RT, Hall TC (1994) Cyclophilins are encoded by a small gene family in rice. Plant Mol Biol 25:837–843PubMedCrossRefGoogle Scholar
  12. 12.
    Chen AP, Wang GL, Qu ZL, Lu CX, Liu N, Wang F, Xia GX (2007) Ectopic expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. Plant Cell Rep 26:237–245PubMedCrossRefGoogle Scholar
  13. 13.
    Kan YC, Liu SW, Guo ZJ, LI DB (2002) Characterization of a Cyclophilin cDNA from Soybean Cells. Acta Bot Sin 44:173–176Google Scholar
  14. 14.
    Nuc K, Nuc P, Slomski R (2001) Yellow lupine Cyclophilin transcripts are highly accumulated in the nodule meristem zone. Mol Plant Microbe Interact 14:1384–1394PubMedCrossRefGoogle Scholar
  15. 15.
    Trivedi DK, Yadav S, Vaid N, Tuteja N (2012) Genome wide analysis of Cyclophilin gene family from rice and Arabidopsis and its comparison with yeast. Plant Signal Behav 7:1653–1666PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ahn JC, Kim DW, You YN, Min SS, Park JM, Hwang H, Kim BG, Sheng L, Park HS, Cho HS (2010) Classification of rice (Oryza satival. japonica nipponbare) immunophilins (FKBPs, CYPs) and expression patterns under water stress. BMC Plant Biol 10:253PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wang Q, Yu W, Chai W, Song N, Jing W, Cao L, Jiang H, Li X (2017) Systematic analysis of the maize cyclophilin gene family reveals ZmCYP15 involved in abiotic stress response. Plant Cell, Tissue Organ Cult 128:543–561CrossRefGoogle Scholar
  18. 18.
    Mainali HR, Chapman P, Dhaubhadel S (2014) Genome-wide analysis of Cyclophilin gene family in soybean (Glycine max). BMC Plant Biol 14:282PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Li H, He Z, Lu G, Lee SC, Alonso J, Ecker JR, Luan S (2007) A WD40 domain Cyclophilin interacts with histone H3 and functions in gene repression and organogenesis in Arabidopsis. Plant Cell 19:2403–2416PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zhang Y, Li B, Xu Y, Li H, Li S, Zhang D, Mao Z, Guo S, Yang C, Weng Y, Chong K (2013) The Cyclophilin CYP20-2 modulates the conformation of BRASSINAZOLE-RESISTANT1, which binds the promoter of FLOWERING LOCUS D to regulate flowering in Arabidopsis. Plant Cell 25:2504–2521PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Berardini T, Bollman K, Sun H, Poethig R (2001) Regulation of vegetative phase change in Arabidopsis thaliana by cyclophilin 40. Science 291:2405–2407PubMedCrossRefGoogle Scholar
  22. 22.
    Jing H, Yang X, Zhang J, Liu X, Zheng H, Dong G, Nian J, Feng J, Xia B, Qian Q (2015) Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nat Commun 6:7395PubMedCrossRefGoogle Scholar
  23. 23.
    Kang B, Zhang Z, Wang L, Zheng L, Mao W, Li M, Wu Y, Wu P, Mo X (2013) OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation. Plant J 74:86–97PubMedCrossRefGoogle Scholar
  24. 24.
    Zheng H, Li S, Ren B, Zhang J, Ichii M, Taketa S, Tao Y, Zuo J, Wang H (2013) LATERAL ROOTLESS2, a Cyclophilin protein, regulates lateral root initiation and auxin signaling pathway in rice. Mol Plant 6:1719–1721PubMedCrossRefGoogle Scholar
  25. 25.
    Fu A, He Z, Cho HS, Lima A, Buchanan BB, Luan S (2007) A chloroplast cyclophilin functions in the assembly and maintenance of photosystem II in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:15947–15952PubMedCrossRefGoogle Scholar
  26. 26.
    Kim SK, You YN, Park JC, Joung Y, Kim B-G, Ahn JC, Cho HS (2012) The rice thylakoid luminal cyclophilin OsCYP20-2 confers enhanced environmental stress tolerance in tobacco and Arabidopsis. Plant Cell Rep 31:417–426PubMedCrossRefGoogle Scholar
  27. 27.
    Mainali HR, Vadivel AKA, Li X, Gijzen M, Dhaubhadel S (2017) Soybean cyclophilin GmCYP1 interacts with an isoflavonoid regulator GmMYB176. Sci Rep 7:39550PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, Gentzbittel L, Childs KL, Yandell M, Gundlach H (2014) An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genom 15:312CrossRefGoogle Scholar
  29. 29.
    Young ND, Debellé F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang H, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Bergès H, Bidwell S, Bisseling T, Choisne N, Couloux A, DennyR Deshpande S, Dai X, Doyle JJ, Dudez A-M, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, González AJ, Green PJ, Hallab A, Hartog M, Hua A, Humphray SJ, Jeong D-H, JingY Jöcker A, Kenton SM, Kim D-J, Klee K, Lai H, Lang C, Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun J-H, Najar FZ, Nicholson C, Noirot C, O’Bleness M, Paule CR, Poulain J, Prion F, Qin B, Qu C, Retzel EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi R, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang B-B, Wang K, Wang M, Wang X, Warfsmann J, Weissenbach J, White DD, White JD, Wiley GB, Wincker P, Xing Y, Yang L, Yao Z, Ying F, Zhai J, Zhou L, Zuber A, Dénarié J, Dixon RA, May GD, Schwartz DC, Rogers J, Quétier F, Town CD, Roe BA (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Putterill J, Zhang L, Yeoh CC, Balcerowicz M, Jaudal M, Gasic EV (2013) FT genes and regulation of flowering in the legume Medicago truncatula. Funct Plant Biol 40:1199–1207CrossRefGoogle Scholar
  31. 31.
    Goodstein DM, Shengqiang S, Russell H, Rochak N, Hayes RD, Joni F, Therese M, William D, Uffe H, Nicholas P (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao PX, Tang Y, Udvardi MK (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55:504–513PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14:695–700PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Cao J, Li M, Chen J, Liu P, Li Z (2016) Effects of MeJA on Arabidopsis metabolome under endogenous JA deficiency. Sci Rep 6:37674PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    He Z, Li L, Luan S (2004) Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant Physiol 134:1248–1267PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Dominguez-Solis JR, He Z, Lima A, Ting J, Buchanan BB, Luan S (2008) A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts. Proc Natl Acad Sci USA 105:16386–16391PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X-C, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178CrossRefGoogle Scholar
  38. 38.
    Bruce JW, Wilcox KW (2002) Identification of a motif in the C terminus of herpes simplex virus regulatory protein ICP4 that contributes to activation of transcription. J Virol 76:195–207PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Blatch GL, Lässle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21:932–939PubMedCrossRefGoogle Scholar
  40. 40.
    Earley KW, Poethig RS (2011) Binding of the cyclophilin 40 ortholog SQUINT to Hsp90 protein is required for SQUINT function in Arabidopsis. J Biol Chem 286:38184–38189PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bandziulis RJ, Swanson MS, Dreyfuss G (1989) RNA-binding proteins as developmental regulators. Genes Dev 3:431–437PubMedCrossRefGoogle Scholar
  42. 42.
    Tordai H, Bányai L, Patthy L (1999) The PAN module: the N-terminal domains of plasminogen and hepatocyte growth factor are homologous with the apple domains of the prekallikrein family and with a novel domain found in numerous nematode proteins. FEBS Lett 461:63–67PubMedCrossRefGoogle Scholar
  43. 43.
    Van Nocker S, Ludwig P (2003) The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genom 4:50CrossRefGoogle Scholar
  44. 44.
    Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI (2001) U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem 276:33111–33120PubMedCrossRefGoogle Scholar
  45. 45.
    Bowers JE, Chapman BA, Junkang R, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438PubMedCrossRefGoogle Scholar
  46. 46.
    Chou IT, Gasser CS (1997) Characterization of the cyclophilin gene family of Arabidopsis thaliana and phylogenetic analysis of known cyclophilin proteins. Plant Mol Biol 35:873–892PubMedCrossRefGoogle Scholar
  47. 47.
    Oh K, Ivanchenko MG, White TJ, Lomax TL (2006) The diageotropica gene of tomato encodes a cyclophilin: a novel player in auxin signaling. Planta 224:133–144PubMedCrossRefGoogle Scholar
  48. 48.
    Ivanchenko MG, Jinsheng Z, Bangjun W, Eva M, Yunlong D, Elisa A, Stefano M, Molly M, Sergei F, Dubrovsky JG (2015) The cyclophilin A DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation. Development 142:712–721PubMedCrossRefGoogle Scholar
  49. 49.
    Ruan SL, Ma HS, Wang SH, Fu YP, Xin Y, Liu WZ, Wang F, Tong JX, Wang SZ, Chen HZ (2011) Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed. BMC Plant Biol 11:34PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lee SS, Park HJ, Yoon DH, Kim BG, Ahn JC, Luan S, Cho HS (2015) Rice cyclophilin OsCYP18-2 is translocated to the nucleus by an interaction with SKIP and enhances drought tolerance in rice and Arabidopsis. Plant Cell Environ 38:2071–2087PubMedCrossRefGoogle Scholar
  51. 51.
    Yoon DH, Lee SS, Park HJ, Lyu JI, Chong WS, Liu JR, Kim B-G, Ahn JC, Cho HS (2016) Overexpression of OsCYP19-4 increases tolerance to cold stress and enhances grain yield in rice (Oryza sativa). J Exp Bot 67:69–82PubMedCrossRefGoogle Scholar
  52. 52.
    Liu R, Finlayson SA (2019) Sorghum tiller bud growth is repressed by contact with the overlying leaf. Plant Cell Environ 42:2120–2132PubMedGoogle Scholar
  53. 53.
    Laxa M, König J, Dietz K-J, Kandlbinder A (2006) Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis–trans isomerase and redox-related functions. Biochem J 401:287–297PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Cai W, Ma J, Guo J, Zhang L (2008) Function of ROC4 in the efficient repair of photodamaged photosystem II in Arabidopsis. Photochem Photobiol 84:1343–1348PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
  2. 2.Key Laboratory of Pratacultural ScienceBeijingChina

Personalised recommendations