Anti-inflammatory effects of C-peptide on kidney of type 1 diabetes mellitus animal model

  • Michelle T. Alves
  • Amanda C. S. Chaves
  • Ana Paula M. Almeida
  • Ana Cristina Simões e Silva
  • Stanley de A. Araújo
  • Ana Paula L. Mota
  • Thiago R. dos Mares-Guia
  • Ana Paula Fernandes
  • Karina B. GomesEmail author
Short Communication


Type 1 diabetes mellitus (T1DM) is characterized by C-peptide deficiency and elevated levels of pro-inflammatory cytokines. The aim of this study was to investigate the role of C-peptide in renal and inflammatory complications in streptozotocin (STZ)-diabetic mice model of T1DM with kidney disease. The study was performed in 8-week old male C57BL/6 mice. Two streptozotocin-diabetic groups (a T1DM animal model), after 4 weeks of diabetes, were treated with subcutaneous infusion of either vehicle (n = 12) or C-peptide (n = 11). Two non-diabetic groups (vehicle, n = 10; C-peptide, n = 9) were treated using the same protocol as described for the diabetic mice. The treatment with C-peptide in the diabetic group reduced the urinary levels of IL17 and TNFα, as well as IL4 and IL10 (p < 0.05). Contrary, the diabetic + C-peptide group presented higher IL10 gene expression in kidney. Besides, it displayed a reduction of TNFα gene expression. The data suggest that C-peptide may modulate pro- and anti-inflammatory signalling pathways, resulting in attenuation of kidney inflammation in T1DM animal model.


C-peptide Type 1 diabetes mellitus Inflammation Kidney disease 



ACSS, APF and KBG are grateful to CNPq Research Fellowship (PQ). This work was supported by FAPEMIG, CNPq/Brazil and CAPES.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chiang JL, Kirkman MS, Laffel LMG, Peters AL (2014) Type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care 37:2034–2054CrossRefGoogle Scholar
  2. 2.
    Luppi P, Kallas A, Wahren J (2013) Can C-peptide mediated anti-inflammatory effects retard the development of microvascular complications of type 1 diabetes? Diabetes Metab Res Rev 29:357–362CrossRefGoogle Scholar
  3. 3.
    Sanchez-Zamora YI, Juarez-Avelar I, Vazquez-Mendoza A, Hiriart M, Rodriguez-Sosa M (2016) Altered macrophage and dendritic cell response in Mif −/− mice reveals a role of Mif for inflammatory-Th1 response in type 1 diabetes. J Diabetes Res 2016:7053963CrossRefGoogle Scholar
  4. 4.
    Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, García-Pérez J (2011) Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 7(6):327–340CrossRefGoogle Scholar
  5. 5.
    DiPetrillo K, Coutermarsh B, Gesek FA (2003) Urinary tumor necrosis factor contributes to sodium retention and renal hypertrophy during diabetes. Am J Physiol Renal Physiol 284:F113–F121CrossRefGoogle Scholar
  6. 6.
    Steiner DF, Cunningham D, Spigelman L, Aten B (1967) Insulin biosynthesis: evidence for a precursor. Science 157(789):697–700CrossRefGoogle Scholar
  7. 7.
    Johansson BL, Linde B, Wahren J (1992) Effects of C-peptide on blood flow, capillary diffusion capacity and glucose utilization in the exercising forearm of type 1 (insulin-dependent) diabetic patients. Diabetologia 35:1151–1158CrossRefGoogle Scholar
  8. 8.
    Wahren J, Larsson C (2015) C-peptide: new findings and therapeutic possibilities. Diabetes Res Clin Pract 107:309–319CrossRefGoogle Scholar
  9. 9.
    Sun C, Sun L, Ma H, Peng J, Zhen Y, Duan K et al (2012) The phenotype and functional alterations of macrophages in mice with hyperglycemia for long term. J Cell Physiol 227(4):1670–1679CrossRefGoogle Scholar
  10. 10.
    Driessler F, Venstrom K, Sabat R, Asadullah K, Schottelius AJ (2004) Molecular mechanisms of interleukin-10-mediated inhibition of NF-κB activity: a role for p50. Clin Exp Immunol 135(1):64–73CrossRefGoogle Scholar
  11. 11.
    Uhde A, Ciurkiewicz M, Herder V, Khan MA, Hensel N, Claus P et al (2018) Intact interleukin-10 receptor signaling protects from hippocampal damage elicited by experimental neurotropic virus infection of SJL mice. Sci Rep 8:6106CrossRefGoogle Scholar
  12. 12.
    Kimmel PL, Cohen DJ, Abraham AA, Bodi I, Schwartz AM, Phillips TM (2003) Upregulation of MHC class II, interferon-a and interferon-g receptor protein expression in HIV-associated nephropathy. Nephrol Dial Transplant 18:285–292CrossRefGoogle Scholar
  13. 13.
    Samnegard B, Jacobson SH, Jaremko G, Johansson BL, Ekberg K, Isaksson B et al (2005) C-peptide prevents glomerular hypertrophy and mesangial matrix expansion in diabetic rats. Nephrol Dial Transplant 20:532–538CrossRefGoogle Scholar
  14. 14.
    Sjoquist M, Huang W, Johansson BL (1998) Effects of C-peptide on renal function at the early stage of experimental diabetes. Kidney Int 54:758–764CrossRefGoogle Scholar
  15. 15.
    Flynn E, Lee J, Hutchens Z, Chade A, Maric-Bilkan C (2013) C-peptide preserves the renal microvascular architecture in the streptozotocin-induced diabetic rat. J Diabetes Complicat 27:538–547CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Michelle T. Alves
    • 1
  • Amanda C. S. Chaves
    • 1
  • Ana Paula M. Almeida
    • 1
  • Ana Cristina Simões e Silva
    • 2
  • Stanley de A. Araújo
    • 3
  • Ana Paula L. Mota
    • 1
  • Thiago R. dos Mares-Guia
    • 4
  • Ana Paula Fernandes
    • 1
  • Karina B. Gomes
    • 1
    Email author
  1. 1.Departamento de Análises Clínicas e Toxicológicas, Faculdade de FarmáciaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de Pediatria, Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Hospital das Clínicas, Universidade Federal de Minas GeraisBelo HorizonteBrazil
  4. 4.Núcleo de Terapia Celular e Molecular (NUCEL/NETCEM)Universidade de São PauloSão PauloBrazil

Personalised recommendations