Advertisement

Overview of Staphylococcus epidermidis cell wall-anchored proteins: potential targets to inhibit biofilm formation

  • Silvestre Ortega-Peña
  • Sergio Martínez-García
  • Sandra Rodríguez-Martínez
  • Mario E. Cancino-Diaz
  • Juan C. Cancino-DiazEmail author
Review
  • 126 Downloads

Abstract

Currently, the treatment of infections by Staphylococcus epidermidis (S. epidermidis) represents a challenge because some strains have multidrug-resistance to antimicrobial products (antibiotic and biocides) and can produce biofilms. These biofilms protect bacterial cells from both antimicrobials and the host immune response. Therefore, it is crucial to encourage research on the development of new treatments. One method is immunotherapy, targeting components of S. epidermidis, such as S. epidermidis surface (Ses) proteins. Ses is expressed constitutively in most strains, and they participate in biofilm formation. This review is an update on Ses, regarding their structure, biological function, their relationship with S. epidermidis biofilm formation, and its possible role as therapeutic targets to develop immunotherapeutic treatments to prevent infections by S. epidermidis.

Keywords

Staphylococcus epidermidis Ses Biofilm Immunotherapy 

Notes

Acknowledgements

This work was supported by the SIP-Instituto Politécnico Nacional Mexico 20181167. SRM, MCCD, and JCCD appreciate the COFAA and EDI, Instituto Politécnico Nacional fellowships, and the support from Sistema Nacional de Investigadores, CONACyT.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Becker K, Heilmann C, Peters G (2014) Coagulase-negative staphylococci. Clin Microbiol Rev 27:870–926.  https://doi.org/10.1128/CMR.00109-13 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Oliveira WF, Silva PMS, Silva RCS et al (2018) Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect 98:111–117.  https://doi.org/10.1016/j.jhin.2017.11.008 CrossRefPubMedGoogle Scholar
  3. 3.
    Martínez-Meléndez A, Morfín-Otero R, Villarreal-Treviño L et al (2016) Molecular epidemiology of coagulase-negative bloodstream isolates: detection of Staphylococcus epidermidis ST2, ST7 and linezolid-resistant ST23. Braz J Infect Dis 20:419–428.  https://doi.org/10.1016/j.bjid.2016.05.007 CrossRefPubMedGoogle Scholar
  4. 4.
    Saffari F, Widerström M, Gurram BK et al (2016) Molecular and phenotypic characterization of multidrug-resistant clones of Staphylococcus epidermidis in Iranian hospitals: clonal relatedness to healthcare-associated methicillin-resistant isolates in Northern Europe. Microb Drug Resist 22:570–577.  https://doi.org/10.1089/mdr.2015.0283 CrossRefPubMedGoogle Scholar
  5. 5.
    Knafl D, Tobudic S, Cheng SC et al (2017) Dalbavancin reduces biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE). Eur J Clin Microbiol Infect Dis 36:677–680.  https://doi.org/10.1007/s10096-016-2845-z CrossRefPubMedGoogle Scholar
  6. 6.
    Ortega-Peña S, Hernández-Zamora E (2018) Microbial biofilms and their impact on medical areas: physiopathology, diagnosis and treatment. Bol Med Hosp Infant Mex 75:79–88.  https://doi.org/10.24875/BMHIM.M18000012 CrossRefPubMedGoogle Scholar
  7. 7.
    Le KY, Park MD, Otto M (2018) Immune evasion mechanisms of Staphylococcus epidermidis biofilm infection. Front Microbiol 9:359.  https://doi.org/10.3389/fmicb.2018.00359 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hijazi K, Mukhopadhya I, Abbott F et al (2016) Susceptibility to chlorhexidine amongst multidrug-resistant clinical isolates of Staphylococcus epidermidis from bloodstream infections. Int J Antimicrob Agents 48:86–90.  https://doi.org/10.1016/j.ijantimicag.2016.04.015 CrossRefPubMedGoogle Scholar
  9. 9.
    Parvizi J, Shohat N, Gehrke T (2017) Prevention of periprosthetic joint infection: new guidelines. Bone Joint J.  https://doi.org/10.1302/0301-620X.99B4.BJJ-2016-1212.R1 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Neut D, Dijkstra RJ, Thompson JI et al (2015) A biodegradable gentamicin-hydroxyapatite-coating for infection prophylaxis in cementless hip prostheses. Eur Cell Mater 29:42–55.  https://doi.org/10.22203/eCM.v029a04 CrossRefPubMedGoogle Scholar
  11. 11.
    Neut D, Dijkstra RJB, Thompson JI et al (2011) Antibacterial efficacy of a new gentamicin-coating for cementless prostheses compared to gentamicin-loaded bone cement. J Orthop Res 29:1654–1661.  https://doi.org/10.1002/jor.21433 CrossRefPubMedGoogle Scholar
  12. 12.
    Tran PA, O’Brien-Simpson N, Palmer JA et al (2019) Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment. Int J Nanomed 14:4613–4624.  https://doi.org/10.2147/IJN.S197737 CrossRefGoogle Scholar
  13. 13.
    Albayaty YN, Thomas N, Jambhrunkar M et al (2019) Enzyme responsive copolymer micelles enhance the anti-biofilm efficacy of the antiseptic chlorhexidine. Int J Pharm 566:329–341.  https://doi.org/10.1016/j.ijpharm.2019.05.069 CrossRefPubMedGoogle Scholar
  14. 14.
    Cutrona N, Gillard K, Ulrich R et al (2019) From antihistamine to anti-infective: loratadine inhibition of regulatory PASTA kinases in Staphylococci reduces biofilm formation and potentiates β-lactam antibiotics and vancomycin in resistant strains of Staphylococcus aureus. ACS Infect Dis 5:1397–1410.  https://doi.org/10.1021/acsinfecdis.9b00096 CrossRefPubMedGoogle Scholar
  15. 15.
    Granata G, Stracquadanio S, Consoli GML et al (2019) Synthesis of a calix[4]arene derivative exposing multiple units of fucose and preliminary investigation as a potential broad-spectrum antibiofilm agent. Carbohydr Res 476:60–64.  https://doi.org/10.1016/j.carres.2019.03.005 CrossRefPubMedGoogle Scholar
  16. 16.
    Van Mellaert L, Shahrooei M, Hofmans D, Van Eldere J (2012) Immunoprophylaxis and immunotherapy of Staphylococcus epidermidis infections: challenges and prospects. Expert Rev Vaccines 11:319–334.  https://doi.org/10.1586/erv.11.190 CrossRefPubMedGoogle Scholar
  17. 17.
    Speziale P, Pietrocola G, Foster TJ, Geoghegan JA (2014) Protein-based biofilm matrices in Staphylococci. Front Cell Infect Microbiol 4:171.  https://doi.org/10.3389/fcimb.2014.00171 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Foster TJ, Geoghegan JA, Ganesh VK, Höök M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12:49–62.  https://doi.org/10.1038/nrmicro3161 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dramsi S, Bierne H (2017) Spatial organization of cell wall-anchored proteins at the surface of gram-positive bacteria. Curr Top Microbiol Immunol 404:177–201.  https://doi.org/10.1007/82_2016_4 CrossRefPubMedGoogle Scholar
  20. 20.
    Büttner H, Mack D, Rohde H (2015) Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Front Cell Infect Microbiol 5:14.  https://doi.org/10.3389/fcimb.2015.00014 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bowden MG, Chen W, Singvall J et al (2005) Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis. Microbiology 151:1453–1464.  https://doi.org/10.1099/mic.0.27534-0 CrossRefPubMedGoogle Scholar
  22. 22.
    Arora S, Uhlemann A-C, Lowy FD, Hook M (2016) A novel MSCRAMM subfamily in coagulase negative staphylococcal species. Front Microbiol 7:540.  https://doi.org/10.3389/fmicb.2016.00540 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shahrooei M, Hira V, Khodaparast L et al (2012) Vaccination with SesC decreases Staphylococcus epidermidis biofilm formation. Infect Immun 80:3660–3668.  https://doi.org/10.1128/IAI.00104-12 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hofmans D, Khodaparast L, Khodaparast L et al (2018) Ses proteins as possible targets for vaccine development against Staphylococcus epidermidis infections. J Infect 77:119–130.  https://doi.org/10.1016/j.jinf.2018.03.013 CrossRefPubMedGoogle Scholar
  25. 25.
    Forster BM, Marquis H (2012) Protein transport across the cell wall of monoderm gram-positive bacteria. Mol Microbiol 84:405–413.  https://doi.org/10.1111/j.1365-2958.2012.08040.x CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schaeffer CR, Woods KM, Longo GM et al (2015) Accumulation-associated protein enhances Staphylococcus epidermidis biofilm formation under dynamic conditions and is required for infection in a rat catheter model. Infect Immun 83:214–226.  https://doi.org/10.1128/IAI.02177-14 CrossRefPubMedGoogle Scholar
  27. 27.
    Bowden MG, Heuck AP, Ponnuraj K et al (2008) Evidence for the “dock, lock, and latch” ligand binding mechanism of the staphylococcal microbial surface component recognizing adhesive matrix molecules (MSCRAMM) SdrG. J Biol Chem 283:638–647.  https://doi.org/10.1074/jbc.M706252200 CrossRefPubMedGoogle Scholar
  28. 28.
    McCrea KW, Hartford O, Davis S et al (2000) The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis. Microbiology 146:1535–1546.  https://doi.org/10.1099/00221287-146-7-1535 CrossRefPubMedGoogle Scholar
  29. 29.
    Arrecubieta C, Lee M-H, Macey A et al (2007) SdrF, a Staphylococcus epidermidis surface protein, binds type I collagen. J Biol Chem 282:18767–18776.  https://doi.org/10.1074/jbc.M610940200 CrossRefPubMedGoogle Scholar
  30. 30.
    Arrecubieta C, Toba FA, von Bayern M et al (2009) SdrF, a Staphylococcus epidermidis surface protein, contributes to the initiation of ventricular assist device driveline-related infections. PLoS Pathog 5:e1000411.  https://doi.org/10.1371/journal.ppat.1000411 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Toba FA, Visai L, Trivedi S, Lowy FD (2013) The role of ionic interactions in the adherence of the Staphylococcus epidermidis adhesin SdrF to prosthetic material. FEMS Microbiol Lett 338:24–30.  https://doi.org/10.1111/1574-6968.12018 CrossRefPubMedGoogle Scholar
  32. 32.
    Hartford O, O’Brien L, Schofield K et al (2001) The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. Microbiology 147:2545–2552CrossRefGoogle Scholar
  33. 33.
    Davis SL, Gurusiddappa S, McCrea KW et al (2001) SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the Bbeta chain. J Biol Chem 276:27799–27805.  https://doi.org/10.1074/jbc.M103873200 CrossRefPubMedGoogle Scholar
  34. 34.
    Vanzieleghem T, Herman-Bausier P, Dufrene YF, Mahillon J (2015) Staphylococcus epidermidis affinity for fibrinogen-coated surfaces correlates with the abundance of the SdrG adhesin on the cell surface. Langmuir 31:4713–4721.  https://doi.org/10.1021/acs.langmuir.5b00360 CrossRefPubMedGoogle Scholar
  35. 35.
    Brennan MP, Loughman A, Devocelle M et al (2009) Elucidating the role of Staphylococcus epidermidis serine-aspartate repeat protein G in platelet activation. J Thromb Haemost 7:1364–1372.  https://doi.org/10.1111/j.1538-7836.2009.03495.x CrossRefPubMedGoogle Scholar
  36. 36.
    Kavanagh N, Ryan EJ, Widaa A et al (2018) Staphylococcal osteomyelitis: disease progression, treatment challenges, and future directions. Clin Microbiol Rev.  https://doi.org/10.1128/CMR.00084-17 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zaatreh S, Wegner K, Strauß M et al (2016) Co-culture of S. epidermidis and human osteoblasts on implant surfaces: an advanced in vitro model for implant-associated infections. PLoS ONE 11:e0151534.  https://doi.org/10.1371/journal.pone.0151534 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Campoccia D, Testoni F, Ravaioli S et al (2016) Orthopedic implant infections: incompetence of Staphylococcus epidermidis, Staphylococcus lugdunensis, and Enterococcus faecalis to invade osteoblasts. J Biomed Mater Res A 104:788–801.  https://doi.org/10.1002/jbm.a.35564 CrossRefPubMedGoogle Scholar
  39. 39.
    Claro T, Kavanagh N, Foster TJ et al (2015) Staphylococcus epidermidis serine-aspartate repeat protein G (SdrG) binds to osteoblast integrin alpha V beta 3. Microbes Infect 17:395–401.  https://doi.org/10.1016/j.micinf.2015.02.003 CrossRefPubMedGoogle Scholar
  40. 40.
    Hussain M, Herrmann M, Peters G (1997) A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun 65:519–524PubMedPubMedCentralGoogle Scholar
  41. 41.
    Rohde H, Burdelski C, Bartscht K et al (2005) Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55:1883–1895.  https://doi.org/10.1111/j.1365-2958.2005.04515.x CrossRefPubMedGoogle Scholar
  42. 42.
    Rohde H, Burandt EC, Siemssen N et al (2007) Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 28:1711–1720.  https://doi.org/10.1016/j.biomaterials.2006.11.046 CrossRefPubMedGoogle Scholar
  43. 43.
    Paharik A, Kotasinska M, Both A et al (2017) The metalloprotease SepA governs processing of accumulation-associated protein and shapes intercellular adhesive surface properties in Staphylococcus epidermidis. Mol Microbiol 103:860–874.  https://doi.org/10.1002/art.34459 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Schommer NN, Christner M, Hentschke M et al (2011) Staphylococcus epidermidis uses distinct mechanisms of biofilm formation to interfere with phagocytosis and activation of mouse macrophage-like cells 774A.1. Infect Immun 79:2267–2276.  https://doi.org/10.1128/IAI.01142-10 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Conlon BP, Geoghegan JA, Waters EM et al (2014) Role for the A domain of unprocessed accumulation-associated protein (Aap) in the attachment phase of the Staphylococcus epidermidis biofilm phenotype. J Bacteriol 196:4268–4275.  https://doi.org/10.1128/JB.01946-14 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Banner MA, Cunniffe JG, Macintosh RL et al (2007) Localized tufts of fibrils on Staphylococcus epidermidis NCTC 11047 are comprised of the accumulation-associated protein. J Bacteriol 189:2793–2804.  https://doi.org/10.1128/JB.00952-06 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Geoghegan JA, Corrigan RM, Gruszka DT et al (2010) Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J Bacteriol 192:5663–5673.  https://doi.org/10.1128/JB.00628-10 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Conrady DG, Wilson JJ, Herr AB (2013) Structural basis for Zn2+-dependent intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci USA 110:E202–E211.  https://doi.org/10.1073/pnas.1208134110 CrossRefPubMedGoogle Scholar
  49. 49.
    Formosa-Dague C, Speziale P, Foster TJ et al (2015) Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. Proc Natl Acad Sci USA 113:410–415.  https://doi.org/10.1073/pnas.1519265113 CrossRefPubMedGoogle Scholar
  50. 50.
    Macintosh RL, Brittan JL, Bhattacharya R et al (2009) The terminal A domain of the fibrillar accumulation-associated protein (Aap) of Staphylococcus epidermidis mediates adhesion to human corneocytes. J Bacteriol 191:7007–7016.  https://doi.org/10.1128/JB.00764-09 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Valle J, Latasa C, Gil C et al (2012) Bap, a biofilm matrix protein of Staphylococcus aureus prevents cellular internalization through binding to GP96 host receptor. PLoS Pathog 8:e1002843.  https://doi.org/10.1371/journal.ppat.1002843 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Harris LG, Murray S, Pascoe B et al (2016) Biofilm morphotypes and population structure among Staphylococcus epidermidis from commensal and clinical samples. PLoS ONE 11:e0151240.  https://doi.org/10.1371/journal.pone.0151240 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Klingenberg C, Rønnestad A, Anderson AS et al (2007) Persistent strains of coagulase-negative staphylococci in a neonatal intensive care unit: virulence factors and invasiveness. Clin Microbiol Infect 13:1100–1111.  https://doi.org/10.1111/j.1469-0691.2007.01818.x CrossRefPubMedGoogle Scholar
  54. 54.
    Khodaparast L, Khodaparast L, Shahrooei M et al (2016) The possible role of staphylococcus epidermidis LPxTG surface protein SesC in biofilm formation. PLoS ONE 11:e0146704.  https://doi.org/10.1371/journal.pone.0146704 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Khodaparast L, Khodaparast L, Van Mellaert L et al (2016) sesC as a genetic marker for easy identification of Staphylococcus epidermidis from other isolates. Infect Genet Evol 43:222–224.  https://doi.org/10.1016/j.meegid.2016.05.037 CrossRefPubMedGoogle Scholar
  56. 56.
    Shahrooei M, Hira V, Stijlemans B et al (2009) Inhibition of Staphylococcus epidermidis biofilm formation by rabbit polyclonal antibodies against the SesC protein. Infect Immun 77:3670–3678.  https://doi.org/10.1128/IAI.01464-08 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Qi X, Jin Y, Duan J et al (2018) SesI may be associated with the invasiveness of Staphylococcus epidermidis. Front Microbiol 8:2574.  https://doi.org/10.3389/fmicb.2017.02574 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Söderquist B, Andersson M, Nilsson M et al (2009) Staphylococcus epidermidis surface protein I (SesI): a marker of the invasive capacity of S. epidermidis? J Med Microbiol 58:1395–1397.  https://doi.org/10.1099/jmm.0.008771-0 CrossRefPubMedGoogle Scholar
  59. 59.
    Post V, Harris LG, Morgenstern M et al (2017) Comparative genomics study of Staphylococcus epidermidis isolates from orthopedic-device-related infections correlated with patient outcome. J Clin Microbiol 55:3089–3103.  https://doi.org/10.1128/JCM.00881-17 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Botelho AMN, das Nunes Z, Asensi MD et al (2012) Characterization of coagulase-negative staphylococci isolated from hospital indoor air and a comparative analysis between airborne and inpatient isolates of Staphylococcus epidermidis. J Med Microbiol 61:1136–1145.  https://doi.org/10.1099/jmm.0.035931-0 CrossRefPubMedGoogle Scholar
  61. 61.
    Salgueiro VC, Iorio NLP, Ferreira MC et al (2017) Methicillin resistance and virulence genes in invasive and nasal Staphylococcus epidermidis isolates from neonates. BMC Microbiol 17:15.  https://doi.org/10.1186/s12866-017-0930-9 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ortega-Peña S, Vargas-Mendoza CF, Franco-Cendejas R et al (2019) sesA, sesB, sesC, sesD, sesE, sesG, sesH, and embp genes are genetic markers that differentiate commensal isolates of Staphylococcus epidermidis from isolates that cause prosthetic joint infection. Infect Dis (Lond) 51:435–445.  https://doi.org/10.1080/23744235.2019.1597276 CrossRefGoogle Scholar
  63. 63.
    Vernachio JH, Bayer AS, Ames B et al (2006) Human immunoglobulin G recognizing fibrinogen-binding surface proteins is protective against both Staphylococcus aureus and Staphylococcus epidermidis infections in vivo. Antimicrob Agents Chemother 50:511–518.  https://doi.org/10.1128/AAC.50.2.511-518.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Sellman BR, Timofeyeva Y, Nanra J et al (2008) Expression of Staphylococcus epidermidis SdrG increases following exposure to an in vivo environment. Infect Immun 76:2950–2957.  https://doi.org/10.1128/IAI.00055-08 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Hu J, Xu T, Zhu T et al (2011) Monoclonal antibodies against accumulation-associated protein affect EPS biosynthesis and enhance bacterial accumulation of Staphylococcus epidermidis. PLoS ONE 6:e20918.  https://doi.org/10.1371/journal.pone.0020918 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Yan L, Zhang L, Ma H et al (2014) A single B-repeat of Staphylococcus epidermidis accumulation-associated protein induces protective immune responses in an experimental biomaterial-associated infection mouse model. Clin Vaccine Immunol 21:1206–1214.  https://doi.org/10.1128/CVI.00306-14 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Weiland-Bräuer N, Malek I, Schmitz RA (2019) Metagenomic quorum quenching enzymes affect biofilm formation of Candida albicans and Staphylococcus epidermidis. PLoS ONE 14:e0211366.  https://doi.org/10.1371/journal.pone.0211366 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hazenbos WL, Kajihara KK, Vandlen R et al (2013) Novel staphylococcal glycosyltransferases SdgA and SdgB mediate immunogenicity and protection of virulence-associated cell wall proteins. PLoS Pathog 9(10):e1003653.  https://doi.org/10.1371/journal.ppat.1003653 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MicrobiologyEscuela Nacional de Ciencias Biológicas-Instituto Politécnico NacionalMexico CityMexico
  2. 2.Laboratory of InfectologyInstituto Nacional de Rehabilitación Luis Guillermo Ibarra IbarraMexico CityMexico
  3. 3.Department of Immunology, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico NacionalMexico CityMexico

Personalised recommendations