Molecular Biology Reports

, Volume 46, Issue 6, pp 6105–6115 | Cite as

In-silico design and production of a novel antigenic chimeric Shigella IpaB fused to C-terminal of Clostridium perfringens enterotoxin

  • Sina Arabshahi
  • Abdollah DerakhshandehEmail author
  • Bahar Nayeri Fasaei
  • Aytak Novinrooz
Original Article


The emergence of antibiotic-resistant phenotypes in Shigella serotypes and the high mortality rate, approximately one million dead annually, in affected patients announce a global demand for an effective serotype-independent vaccine against Shigella. This study aims to design, express, and purify a novel chimeric protein, as a serotype-independent vaccine candidate against Shigella containing full-length Shigella invasion plasmid antigen B (IpaB) and a C-terminal fragment (residues 194–319) of Clostridium perfringens enterotoxin (C-CPE) as a mucosal adjuvant. Several online databases and bioinformatics software were utilized to design the chimeric protein and the relative recombinant gene. The recombinant gene encoding IpaB–CPE194–319 was synthesized, cloned into pACYCDuet-1 expression vector, and transferred to E. coli Bl21 (DE3) cells. IpaB–CPE194–319 was then expressed in auto-induction medium, purified and characterized using MALDI-TOF-TOF mass spectrometry. Followed by subcutaneous injection of the purified IpaB–CPE194–319 to BALB/c mice, antigenicity of this chimeric protein was determined through performing dot-blot immunoassay on nitrocellulose membrane using mice sera. The outcomes of this study show the successful design, efficient expression, and purification of IpaB–CPE194–319 divalent chimeric protein under mentioned conditions. The obtained results also demonstrate the intrinsic antigenic property of IpaB–CPE194–319.


Shigella Vaccine candidate IpaB Chimeric protein Clostridium perfringens Enterotoxin CPE In silico 



The authors would like to thank Dr. Iradj Ashrafi Tamai and Mr. Rasoul Sorbi for their cooperation during the project. We also tank Mrs. Bahareh Arabshahi for her helpful assistance in drawing and generating graphic works.


This study was funded by Shiraz University (Grant Number 9160423).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by Animal Ethics Committee (AECs) of School of Veterinary Medicine, Shiraz University (permit: 94INT1M163973), and all the animal experiments were performed in accordance with guidelines and regulations of this committee (dated 20 September 2013) adhering to the Helsinki Declaration.

Supplementary material

11033_2019_5046_MOESM1_ESM.pdf (639 kb)
Supplementary material 1 (PDF 638 kb)
11033_2019_5046_MOESM2_ESM.pdf (275 kb)
Supplementary material 2 (PDF 275 kb)
11033_2019_5046_MOESM3_ESM.pdf (459 kb)
Supplementary material 3 (PDF 459 kb)
11033_2019_5046_MOESM4_ESM.pdf (205 kb)
Supplementary material 4 (PDF 204 kb)


  1. 1.
    Carayol N, Van Nhieu GT (2013) The inside story of Shigella invasion of intestinal epithelial cells. Cold Spring Harb Perspect Med 3(10):a016717. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jennison AV, Verma NK (2004) Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiol Rev 28(1):43–58. CrossRefPubMedGoogle Scholar
  3. 3.
    Carayol N, Tran Van Nhieu G (2013) Tips and tricks about Shigella invasion of epithelial cells. Curr Opin Microbiol 16(1):32–37. CrossRefPubMedGoogle Scholar
  4. 4.
    Dharmasena MN, Hanisch BW, Wai TT, Kopecko DJ (2013) Stable expression of Shigella sonnei form I O-polysaccharide genes recombineered into the chromosome of live Salmonella oral vaccine vector Ty21a. Int J Med Microbiol 303(3):105–113. CrossRefPubMedGoogle Scholar
  5. 5.
    Heine SJ, Diaz-McNair J, Martinez-Becerra FJ, Choudhari SP, Clements JD, Picking WL, Pasetti MF (2013) Evaluation of immunogenicity and protective efficacy of orally delivered Shigella type III secretion system proteins IpaB and IpaD. Vaccine 31(28):2919–2929. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Martinez-Becerra FJ, Chen X, Dickenson NE, Choudhari SP, Harrison K, Clements JD, Picking WD, Van De Verg LL, Walker RI, Picking WL (2013) Characterization of a novel fusion protein from IpaB and IpaD of Shigella spp. and its potential as a pan-Shigella vaccine. Infect Immun 81(12):4470–4477. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dickenson NE, Zhang L, Epler CR, Adam PR, Picking WL, Picking WD (2011) Conformational changes in IpaD from Shigella flexneri upon binding bile salts provide insight into the second step of type III secretion. Biochemistry 50(2):172–180. CrossRefPubMedGoogle Scholar
  8. 8.
    Oaks EV, Turbyfill KR (2006) Development and evaluation of a Shigella flexneri 2a and S. sonnei bivalent invasin complex (Invaplex) vaccine. Vaccine 24(13):2290–2301. CrossRefPubMedGoogle Scholar
  9. 9.
    Riddle MS, Kaminski RW, Williams C, Porter C, Baqar S, Kordis A, Gilliland T, Lapa J, Coughlin M, Soltis C, Jones E, Saunders J, Keiser PB, Ranallo RT, Gormley R, Nelson M, Turbyfill KR, Tribble D, Oaks EV (2011) Safety and immunogenicity of an intranasal Shigella flexneri 2a Invaplex 50 vaccine. Vaccine 29(40):7009–7019. CrossRefPubMedGoogle Scholar
  10. 10.
    Martinez-Becerra FJ, Kissmann JM, Diaz-McNair J, Choudhari SP, Quick AM, Mellado-Sanchez G, Clements JD, Pasetti MF, Picking WL (2012) Broadly protective Shigella vaccine based on type III secretion apparatus proteins. Infect Immun 80(3):1222–1231. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chitradevi ST, Kaur G, Sivaramakrishna U, Singh D, Bansal A (2016) Development of recombinant vaccine candidate molecule against Shigella infection. Vaccine 34(44):5376–5383. CrossRefPubMedGoogle Scholar
  12. 12.
    Ebihara C, Kondoh M, Hasuike N, Harada M, Mizuguchi H, Horiguchi Y, Fujii M, Watanabe Y (2006) Preparation of a claudin-targeting molecule using a C-terminal fragment of Clostridium perfringens enterotoxin. J Pharmacol Exp Ther 316(1):255–260. CrossRefPubMedGoogle Scholar
  13. 13.
    Van Itallie CM, Betts L, Smedley JG 3rd, McClane BA, Anderson JM (2008) Structure of the claudin-binding domain of Clostridium perfringens enterotoxin. J Biol Chem 283(1):268–274. CrossRefPubMedGoogle Scholar
  14. 14.
    Lu Z, Ding L, Lu Q, Chen YH (2013) Claudins in intestines: distribution and functional significance in health and diseases. Tissue barriers 1(3):e24978. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tamagawa H, Takahashi I, Furuse M, Yoshitake-Kitano Y, Tsukita S, Ito T, Matsuda H, Kiyono H (2003) Characteristics of claudin expression in follicle-associated epithelium of Peyer’s patches: preferential localization of claudin-4 at the apex of the dome region. Lab Invest 83(7):1045–1053CrossRefGoogle Scholar
  16. 16.
    Lameris AL, Huybers S, Kaukinen K, Makela TH, Bindels RJ, Hoenderop JG, Nevalainen PI (2013) Expression profiling of claudins in the human gastrointestinal tract in health and during inflammatory bowel disease. Scand J Gastroenterol 48(1):58–69. CrossRefPubMedGoogle Scholar
  17. 17.
    Yuan X, Lin X, Manorek G, Kanatani I, Cheung LH, Rosenblum MG, Howell SB (2009) Recombinant CPE fused to tumor necrosis factor targets human ovarian cancer cells expressing the claudin-3 and claudin-4 receptors. Mol Cancer Ther 8(7):1906–1915. CrossRefPubMedGoogle Scholar
  18. 18.
    Suzuki H, Kakutani H, Kondoh M, Watari A, Yagi K (2010) The safety of a mucosal vaccine using the C-terminal fragment of Clostridium perfringens enterotoxin. Pharmazie 65(10):766–769PubMedGoogle Scholar
  19. 19.
    Suzuki H, Watari A, Hashimoto E, Yonemitsu M, Kiyono H, Yagi K, Kondoh M, Kunisawa J (2015) C-terminal Clostridium perfringens enterotoxin-mediated antigen delivery for nasal pneumococcal vaccine. PLoS ONE 10(5):e0126352. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33(7):2302–2309. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. CrossRefPubMedGoogle Scholar
  23. 23.
    Cheung M, Shen DK, Makino F, Kato T, Roehrich AD, Martinez-Argudo I, Walker ML, Murillo I, Liu X, Pain M, Brown J, Frazer G, Mantell J, Mina P, Todd T, Sessions RB, Namba K, Blocker AJ (2015) Three-dimensional electron microscopy reconstruction and cysteine-mediated crosslinking provide a model of the type III secretion system needle tip complex. Mol Microbiol 95(1):31–50. CrossRefPubMedGoogle Scholar
  24. 24.
    El-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting flexible length linear B-cell epitopes. Comput Syst Bioinform Conf 7:121–132Google Scholar
  25. 25.
    Kringelum JV, Lundegaard C, Lund O, Nielsen M (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8(12):e1002829. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Puigbo P, Guzman E, Romeu A, Garcia-Vallve S (2007) OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35(Web Server issue):W126–W131. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hashemitabar M, Bahmanzadeh M, Mostafaie A, Orazizadeh M, Farimani M, Nikbakht R (2014) A proteomic analysis of human follicular fluid: comparison between younger and older women with normal FSH levels. Int J Mol Sci 15(10):17518–17540. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chitradevi ST, Kaur G, Uppalapati S, Yadav A, Singh D, Bansal A (2015) Co-administration of rIpaB domain of Shigella with rGroEL of S. Typhi enhances the immune responses and protective efficacy against Shigella infection. Cell Mol Immunol 12(6):757–767. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Uchida H, Kondoh M, Hanada T, Takahashi A, Hamakubo T, Yagi K (2010) A claudin-4 modulator enhances the mucosal absorption of a biologically active peptide. Biochem Pharmacol 79(10):1437–1444. CrossRefPubMedGoogle Scholar
  30. 30.
    Mitchell LA, Koval M (2010) Specificity of interaction between clostridium perfringens enterotoxin and claudin-family tight junction proteins. Toxins (Basel) 2(7):1595–1611. CrossRefGoogle Scholar
  31. 31.
    Hashimoto Y, Yagi K, Kondoh M (2017) Roles of the first-generation claudin binder, Clostridium perfringens enterotoxin, in the diagnosis and claudin-targeted treatment of epithelium-derived cancers. Pflugers Arch 469(1):45–53. CrossRefPubMedGoogle Scholar
  32. 32.
    Veshnyakova A, Protze J, Rossa J, Blasig IE, Krause G, Piontek J (2010) On the interaction of Clostridium perfringens enterotoxin with claudins. Toxins (Basel) 2(6):1336–1356. CrossRefGoogle Scholar
  33. 33.
    Takahashi A, Kondoh M, Uchida H, Kakamu Y, Hamakubo T, Yagi K (2011) Mutated C-terminal fragments of Clostridium perfringens enterotoxin have increased affinity to claudin-4 and reversibly modulate tight junctions in vitro. Biochem Biophys Res Commun 410(3):466–470. CrossRefPubMedGoogle Scholar
  34. 34.
    Masuyama A, Kondoh M, Seguchi H, Takahashi A, Harada M, Fujii M, Mizuguchi H, Horiguchi Y, Watanabe Y (2005) Role of N-terminal amino acids in the absorption-enhancing effects of the c-terminal fragment of Clostridium perfringens enterotoxin. J Pharmacol Exp Ther 314(2):789–795. CrossRefPubMedGoogle Scholar
  35. 35.
    Gholami A, Shahin S, Mohkam M, Nezafat N, Ghasemi Y (2015) Cloning, characterization and bioinformatics analysis of novel cytosine deaminase from Escherichia coli AGH09. Int J Pept Res Ther 21(3):365–374CrossRefGoogle Scholar
  36. 36.
    Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88(6):1895–1898PubMedGoogle Scholar
  37. 37.
    Cunningham AL, Guentzel MN, Yu JJ, Hung CY, Forsthuber TG, Navara CS, Yagita H, Williams IR, Klose KE, Eaves-Pyles TD, Arulanandam BP (2016) M-cells contribute to the entry of an oral vaccine but are not essential for the subsequent induction of protective immunity against Francisella tularensis. PLoS ONE 11(4):e0153402. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lo DD, Ling J, Eckelhoefer AH (2012) M cell targeting by a Claudin 4 targeting peptide can enhance mucosal IgA responses. BMC Biotechnol 12(7):1–9Google Scholar
  39. 39.
    Picking WL, Picking WD (2016) The many faces of IpaB. Front Cell Infect Microbiol 6:12. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lokareddy RK, Lunelli M, Eilers B, Wolter V, Kolbe M (2010) Combination of two separate binding domains defines stoichiometry between type III secretion system chaperone IpgC and translocator protein IpaB. J Biol Chem 285(51):39965–39975. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dickenson NE, Choudhari SP, Adam PR, Kramer RM, Joshi SB, Middaugh CR, Picking WL, Picking WD (2013) Oligomeric states of the Shigella translocator protein IpaB provide structural insights into formation of the type III secretion translocon. Protein Sci 22(5):614–627. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Shen DK, Saurya S, Wagner C, Nishioka H, Blocker AJ (2010) Domains of the Shigella flexneri type III secretion system IpaB protein involved in secretion regulation. Infect Immun 78(12):4999–5010. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Carson M, Johnson DH, McDonald H, Brouillette C, Delucas LJ (2007) His-tag impact on structure. Acta Crystallogr D 63(Pt 3):295–301. CrossRefPubMedGoogle Scholar
  44. 44.
    Farshadpour F, Taherkhani R, Makvandi M, Rajabi Memari H, Samarbafzadeh AR (2014) Codon-optimized expression and purification of truncated ORF2 protein of hepatitis E virus in Escherichia coli. Jundishapur J Microbiol 7(7):e11261. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Birket SE, Harrington AT, Espina M, Smith ND, Terry CM, Darboe N, Markham AP, Middaugh CR, Picking WL, Picking WD (2007) Preparation and characterization of translocator/chaperone complexes and their component proteins from Shigella flexneri. Biochemistry 46(27):8128–8137. CrossRefPubMedGoogle Scholar
  46. 46.
    Chen X, Choudhari SP, Martinez-Becerra FJ, Kim JH, Dickenson NE, Toth RT, Joshi SB, Greenwood JC, Clements JD, Picking WD, Middaugh CR (2015) Impact of detergent on biophysical properties and immune response of the IpaDB fusion protein, a candidate subunit vaccine against Shigella species. Infect Immun 83(1):292–299CrossRefGoogle Scholar
  47. 47.
    Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci USA 106(6):1760–1765. CrossRefPubMedGoogle Scholar
  48. 48.
    Diegel KL, Danilenko DM, Wojcinski ZW (2013) Integument. In: Haschek WM, Rousseaux CG, Wallig MA (eds) Toxicologic pathology: an introduction, 3rd edn. Academic Press, San DiegoGoogle Scholar
  49. 49.
    Kominsky SL, Vali M, Korz D, Gabig TG, Weitzman SA, Argani P et al (2004) Clostridium perfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3 and 4. Am J Pathol 164(5):1627–1633. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Pathobiology, School of Veterinary MedicineShiraz UniversityShirazIran
  2. 2.Department of Microbiology and Immunology, Faculty of Veterinary MedicineUniversity of TehranTehranIran

Personalised recommendations