Araucaria angustifolia (Bertol.) Kuntze has neuroprotective action through mitochondrial modulation in dopaminergic SH-SY5Y cells
Abstract
Brain disorders (BD) including neuropsychiatric and neurodegenerative diseases, are often associated with impairments in mitochondrial function and oxidative damage that can lead to neuronal injury. The mitochondrial complex I enzyme is one of the main sites of ROS generation and is implicated in many BD pathophysiologies. Despite advances in therapeutics for BD management, conventional pharmacotherapy still cannot efficiently control neuronal redox imbalance and mitochondrial dysfunction. Araucaria angustifolia is one of the main pine species in South America and presents a notable therapeutic history in folk medicine. A. angustifolia extract (AAE), obtained from the natural waste named bracts, is rich in flavonoids; molecules able to regulate cell redox metabolism. We examined the effects of AAE on rotenone-induced mitochondrial complex I dysfunction in human dopaminergic SH-SY5Y cells. AAE restored complex I assembly and activity mainly through overexpression of NDUFS7 protein and NDUFV2 gene levels. These findings were accompanied by a reduction in the generation of neuronal reactive oxygen species and lipid peroxidation. Our data demonstrates, for the first time, that AAE exerts in vitro neuroprotective effects, thus making it an interesting source for future drug development in BD-associated mitochondrial dysfunctions.
Graphic abstract
Keywords
Araucaria angustifolia Polyphenols Complex I Redox imbalance RotenoneNotes
Acknowledgements
This study has been supported by grants from “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)”, “Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)”, and from “Coordenação de Apoio de Pessoal de Nível Superior (CAPES)”, Brazil. Dr. Catia S. Branco is the recipient of a CNPq Research Fellowship (233548/2014-9), along with Dr. Mirian Salvador (308383/2015-1). Dr. Gustavo Scola is supported by Camh Foundation (PDF Award).
Compliance with ethical standards
Conflict of interest
The Authors declare that they have no conflicts of interest.
References
- 1.Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150. https://doi.org/10.1042/BST0351147 CrossRefPubMedGoogle Scholar
- 2.Andreazza AC, Anna MK, Frey BN et al (2008) Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord 111:135–144. https://doi.org/10.1016/j.jad.2008.04.013 CrossRefPubMedGoogle Scholar
- 3.Hayashi M (2009) Oxidative stress in developmental brain disorders. Neuropathology 29:1–8. https://doi.org/10.1111/j.1440-1789.2008.00888.x CrossRefPubMedGoogle Scholar
- 4.Hussain T, Tan B, Yin Y et al (2016) Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev. https://doi.org/10.1155/2016/7432797 CrossRefPubMedPubMedCentralGoogle Scholar
- 5.Leonard BE (2013) Inflammation as the cause of the metabolic syndrome in depression. Inflamm Psychiatry 28:117–126. https://doi.org/10.1159/000343974 CrossRefGoogle Scholar
- 6.Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360:201–205. https://doi.org/10.1124/jpet.116.237503 CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Fraunberger EA, Scola G, Laliberté VLM et al (2016) Redox modulations, antioxidants, and neuropsychiatric disorders. Oxid Med Cell Longev. https://doi.org/10.1155/2016/4729192 CrossRefPubMedGoogle Scholar
- 8.Bhat AH, Dar KB, Anees S et al (2015) Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 74:101–110. https://doi.org/10.1016/j.biopha.2015.07.025 CrossRefPubMedGoogle Scholar
- 9.Sánchez-Caballero L, Guerrero-Castillo S, Nijtmans L (2016) Unraveling the complexity of mitochondrial complex I assembly: a dynamic process. BBA Bioenergy 1857:980–990. https://doi.org/10.1016/j.bbabio.2016.03.031 CrossRefGoogle Scholar
- 10.Zickermann V, Kerscher S, Zwicker K et al (2009) Architecture of complex I and its implications for electron transfer and proton pumping. BBA Bioenergy 1787:574–583. https://doi.org/10.1016/j.bbabio.2009.01.012 CrossRefGoogle Scholar
- 11.Lagoa R, Graziani I, Lopez-Sanchez C et al (2011) Complex I and cytochrome c are molecular targets of flavonoids that inhibit hydrogen peroxide production by mitochondria. Biochim Biophys Acta Bioenergy 1807:1562–1572. https://doi.org/10.1016/j.bbabio.2011.09.022 CrossRefGoogle Scholar
- 12.Rodenburg RJ, Brandt U (2016) Mitochondrial complex I-linked disease. BBA Bioenergy 1857:938–945. https://doi.org/10.1016/j.bbabio.2016.02.012 CrossRefGoogle Scholar
- 13.Vartak RS, Semwal MK, Bai Y (2014) An update on complex I assembly: the assembly of players. J Bioenergy Biomembr 46:323–328. https://doi.org/10.1007/s10863-014-9564-x CrossRefGoogle Scholar
- 14.Bhullar KS, Rupasinghe HPV (2013) Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. Oxid Med Cell Longev. https://doi.org/10.1155/2013/891748 CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Trebatická J, Duracková Zdenka (2015) Psychiatric disorders and polyphenols: can they be helpful in therapy? Oxid Med Cell Longev Review. https://doi.org/10.1155/2015/248529 CrossRefGoogle Scholar
- 16.Beking K, Vieira A (2010) Flavonoid intake and disability-adjusted life years due to Alzheimer’ s and related dementias: a population-based study involving twenty-three developed countries. Public Health Nutr 13:1403–1409. https://doi.org/10.1017/S1368980009992990 CrossRefPubMedGoogle Scholar
- 17.Bensalem J, Dudonné S, Gaudout D et al (2018) Polyphenol-rich extract from grape and blueberry attenuates cognitive decline. J Nutr Sci 7:1–10. https://doi.org/10.1017/jns.2018.10 CrossRefGoogle Scholar
- 18.Carrasco-Pozo C, Mizgier ML, Speisky H, Gotteland M (2012) Differential protective effects of quercetin, resveratrol, rutin and epigallocatechin gallate against mitochondrial dysfunction induced by indomethacin in Caco-2 cells. Chem Biol Interact 195:199–205. https://doi.org/10.1016/j.cbi.2011.12.007 CrossRefPubMedGoogle Scholar
- 19.Branco Rodrigues TS, Lima ED et al (2016) Chemical constituents and biological activities of Araucaria angustifolia (Bertol.) O. Kuntze: a review. J Org Inorg Chem 2:1–10. https://doi.org/10.21767/2472-1123.100008 CrossRefGoogle Scholar
- 20.Michelon F, Branco CS, Calloni C et al (2012) Araucaria angustifolia: a potential nutraceutical with antioxidant and antimutagenic activities. Curr Nutr Food Sci 8:155–159. https://doi.org/10.2174/157340112802651103 CrossRefGoogle Scholar
- 21.Souza M, Branco CS, Sene J et al (2014) Antioxidant and antigenotoxic activities of the brazilian pine Araucaria angustifolia (Bert.) O. Kuntze. Antioxidants 3:24–37. https://doi.org/10.3390/antiox3010024 CrossRefPubMedPubMedCentralGoogle Scholar
- 22.Branco CS, Lima ED, Rodrigues TS et al (2015) Mitochondria and redox homoeostasis as chemotherapeutic targets of Araucaria angustifolia (Bert.) O. Kuntze in human larynx HEp-2 cancer cells. Chem Biol Interact 231:108–118. https://doi.org/10.1016/j.cbi.2015.03.005 CrossRefGoogle Scholar
- 23.Branco CS, Rodrigues TS, Lima ÉD, Salvador M (2015) Polyphenols-rich extract from Araucaria angustifolia: differential mechanisms on cancer and normal cells. Cancer Cell Microenviron 2(e858):1–5. https://doi.org/10.14800/ccm.858 CrossRefGoogle Scholar
- 24.Branco CS, Duong A, Machado A et al (2018) Modulation of mitochondrial and epigenetic targets by polyphenols-rich extract from Araucaria angustifolia in larynx carcinoma. Anticancer Agents Med Chem. https://doi.org/10.2174/1871520618666180816142821[Epub ahead of print] CrossRefGoogle Scholar
- 25.Scola G, Laliberte VLM, Kim HK et al (2014) Vitis labrusca extract effects on cellular dynamics and redox modulations in a SH-SY5Y neuronal cell model: a similar role to lithium. Neurochem Int 79:12–19. https://doi.org/10.1016/j.neuint.2014.10.002 CrossRefPubMedGoogle Scholar
- 26.Machado AK, Andreazza AC, Morgana T et al (2016) Neuroprotective effects of Açaí (Euterpe oleracea Mart.) against rotenone in vitro exposure. Oxid Med Cell Longev. https://doi.org/10.1155/2016/8940850 CrossRefPubMedPubMedCentralGoogle Scholar
- 27.Kim HK, Mendonça KM, Howson PA et al (2015) The link between mitochondrial complex I and brain-derived neurotrophic factor in SH-SY5Y cells—The potential of JNX1001 as a therapeutic agent. Eur J Pharmacol 764:379–384. https://doi.org/10.1016/j.ejphar.2015.07.013 CrossRefPubMedGoogle Scholar
- 28.Potdar S, Parmar MS, Ray SD, Cavanaugh JE (2018) Protective effects of the resveratrol analog piceid in dopaminergic SH-SY5Y cells. Arch Toxicol 92:669–677. https://doi.org/10.1007/s00204-017-2073-z CrossRefPubMedGoogle Scholar
- 29.Degli Esposti M (2002) Measuring mitochondrial reactive oxygen species. Methods 26:335–340. https://doi.org/10.1016/S1046-2023(02)00039-7 CrossRefPubMedGoogle Scholar
- 30.Andreazza AC (2012) Combining redox-proteomics and epigenomics to explain the involvement of oxidative stress in psychiatric disorders. Mol BioSyst 8:2503–2512. https://doi.org/10.1039/c2mb25118c CrossRefPubMedGoogle Scholar
- 31.Ben-Shachar D, Karry R (2008) Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS ONE 3:e3676. https://doi.org/10.1371/journal.pone.0003676 CrossRefPubMedPubMedCentralGoogle Scholar
- 32.Andreazza AC, Shao L, Wang J-F, Young T (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 67:360–369. https://doi.org/10.1001/archgenpsychiatry.2010.22 CrossRefPubMedGoogle Scholar
- 33.Leman G, Gueguen N, Desquiret-dumas V et al (2015) Assembly defects induce oxidative stress in inherited mitochondrial complex I deficiency. Int J Biochem Cell Biol 65:91–103. https://doi.org/10.1016/j.biocel.2015.05.017 CrossRefPubMedGoogle Scholar
- 34.Scola G, Kim HK, Young LT, Andreazza AC (2013) A Fresh look at complex I in microarray data: clues to understanding disease-specific mitochondrial alterations in bipolar disorder. Biol Psychiatry 73:e4–e5. https://doi.org/10.1016/j.biopsych.2012.06.028 CrossRefPubMedGoogle Scholar
- 35.Giachin G, Bouverot R, Acajjaoui S, Pantalone S (2016) Dynamics of human mitochondrial complex I assembly: implications for neurodegenerative diseases. Front Mol Biosci 3:1–20. https://doi.org/10.3389/fmolb.2016.00043 CrossRefGoogle Scholar
- 36.Santos LFS, Stolfo A, Calloni C, Salvador M (2017) Catechin and epicatechin reduce mitochondrial dysfunction and oxidative stress induced by amiodarone in human lung fibroblasts. J Arrhythmia 33:220–225. https://doi.org/10.1016/j.joa.2016.09.004 CrossRefGoogle Scholar
- 37.Waseem M, Parvez S (2015) Neuroprotective activities of curcumin and quercetin with potential relevance to mitochondrial dysfunction induced by oxaliplatin. Protoplasma 253:417–430. https://doi.org/10.1007/s00709-015-0821-6 CrossRefPubMedGoogle Scholar
- 38.Duarte S, Arango D, Parihar A, Hamel P (2013) Apigenin protects endothelial cells from lipopolysaccharide (LPS) -induced inflammation by decreasing caspase-3 activation and modulating mitochondrial function. Int J Mol Sci 14:17664–17679. https://doi.org/10.3390/ijms140917664 CrossRefPubMedPubMedCentralGoogle Scholar
- 39.Marthandan S, Priebe S, Groth M et al (2015) Hormetic effect of rotenone in primary human fibroblasts. Immun Ageing 12:1–14. https://doi.org/10.1186/s12979-015-0038-8 CrossRefGoogle Scholar
- 40.Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. https://doi.org/10.1042/BJ20081386 CrossRefPubMedGoogle Scholar
- 41.Valez V, Cassina A, Batinic-Haberle I et al (2013) Peroxynitrite formation in nitric oxide-exposed submitochondrial particles: detection, oxidative damage and catalytic removal by Mn-porphyrins. Arch Biochem Biophys 529:45–54. https://doi.org/10.1016/j.abb.2012.10.012 CrossRefPubMedGoogle Scholar
- 42.Berk M, Kapczinski F, Andreazza AC et al (2011) Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 35:804–817. https://doi.org/10.1016/j.neubiorev.2010.10.001 CrossRefPubMedGoogle Scholar
- 43.Wong K, Wu Y, Cheng K et al (2014) Palmitic acid-induced lipotoxicity and protection by (+) -catechin in rat cortical astrocytes. Pharmacol Rep 66:1106–1113. https://doi.org/10.1016/j.pharep.2014.07.009 CrossRefPubMedGoogle Scholar
- 44.Tang Y, Xiong R, Wu A et al (2018) Polyphenols derived from lychee seed suppress Aβ (1-42)-induced neuroinflammation. Int J Mol Sci 19:210. https://doi.org/10.3390/ijms19072109 CrossRefGoogle Scholar
- 45.Kang Y, Lee J, Seo YH et al (2018) Epicatechin prevents methamphetamine-induced neuronal cell death via inhibition of ER stress. Biomol Ther 7:1–7. https://doi.org/10.4062/biomolther.2018.092 CrossRefGoogle Scholar
- 46.Martín-Aragón S, Jiménez-Aliaga KL, Benedí J, Bermejo-Bescós P (2016) Neurohormetic responses of quercetin and rutin in a cell line over-expressing the amyloid precursor protein (APPswe cells). Phytomedicine 23:1285–1294. https://doi.org/10.1016/j.phymed.2016.07.007 CrossRefPubMedGoogle Scholar
- 47.Elmazoglu Z, Ergin V, Sahin E et al (2017) Oleuropein and rutin protect against 6-OHDA-induced neurotoxicity in PC12 cells through modulation of mitochondrial function and unfolded protein response. Interdiscip Toxicol 10:129–141. https://doi.org/10.1515/intox-2017-0019 CrossRefPubMedGoogle Scholar
- 48.Godoy JA, Lindsay CB, Quintanilla RA et al (2016) Quercetin exerts differential neuroprotective effects against H2O2 and Aβ aggregates in hippocampal neurons: the role of mitochondria. Mol Neurobiol 54:7116–7128. https://doi.org/10.1007/s12035-016-0203-x CrossRefPubMedGoogle Scholar
- 49.Balez R, Steiner N, Engel M et al (2016) Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Nat Publ Gr. https://doi.org/10.1038/srep31450 CrossRefGoogle Scholar
- 50.Siddique YH, Jyoti S (2017) Alteration in biochemical parameters in the brain of transgenic drosophila melanogaster model of Parkinson’s disease exposed to apigenin. Integr Med Res 6:245–253. https://doi.org/10.1016/j.imr.2017.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
- 51.Anusha C, Sumathi T, Leena DJ (2017) Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem Biol Interact 269:67–79. https://doi.org/10.1016/j.cbi.2017.03.016 CrossRefPubMedGoogle Scholar
- 52.Vissiennon C, Nieber K, Kelber O, Butterweck V (2012) Route of administration determines the anxiolytic activity of the flavonols kaempferol, quercetin and myricetin—are they prodrugs? J Nutr Biochem 23:733–740. https://doi.org/10.1016/j.jnutbio.2011.03.017 CrossRefPubMedGoogle Scholar
- 53.Gutmann H, Bruggisser R, Schaffner W et al (2002) Transport of amentoflavone across the blood—brain barrier in vitro. Planta Med 68:804–807. https://doi.org/10.1055/s-2002-34401 CrossRefPubMedGoogle Scholar
- 54.Suganthy N, Pandima K, Fazel S et al (2016) Bioactive effects of quercetin in the central nervous system: focusing on the mechanisms of actions. Biomed Pharmacother 84:892–908. https://doi.org/10.1016/j.biopha.2016.10.011 CrossRefPubMedGoogle Scholar