Expression and molecular characterization of stress-responsive genes (hsp70 and Mn-sod) and evaluation of antioxidant enzymes (CAT and GPx) in heavy metal exposed freshwater ciliate, Tetmemena sp.

  • Sripoorna Somasundaram
  • Jeeva Susan Abraham
  • Swati Maurya
  • Ravi Toteja
  • Renu Gupta
  • Seema MakhijaEmail author
Original Article


Response of heavy metals namely cadmium (Cd) and copper (Cu) on the expression of stress responsive genes in the fresh water ciliate, Tetmemena sp. (single cell eukaryote) was studied. Stress responsive genes include heat shock protein genes and genes involved in antioxidant defence system. Quantitative real time PCR (qRT-PCR) was employed to evaluate the effects of Cd and Cu on the expression of cytosolic hsp70 and Mn-sod genes. Increase in the expression of these genes was observed after exposure with the heavy metals. The macronuclear cytosolic hsp70 and Mn-sod (SOD2) genes were also sequenced and characterized using various bioinformatics tools. In antioxidant defence system, the superoxide dismutase (SOD) family is a first line antioxidant enzyme group involved in catalysing reactive oxygen species (ROS) to hydrogen peroxide and molecular oxygen. Influence of Cd and Cu on the activity of SOD has already been reported by our group. Therefore, the enzymatic activities of antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx) were studied in the presence of Cd and Cu and there was significant increase in activity of these enzymes in concentration dependent manner. This study suggests that cytosolic hsp70, Mn-sod and the antioxidant enzymes such as CAT and GPx can be used as effective molecular biomarkers for heavy metal toxicity and Tetmemena sp. can be used as potential model for understanding the molecular response to heavy metal contamination in aquatic ecosystems.


Antioxidant enzymes Biomarkers Freshwater ciliate Heavy metal stress Stress genes Tetmemena sp. 



The authors appreciate the facilities provided by the Principal, Acharya Narendra Dev College, University of Delhi for carrying out the present study. The support extended by the Principal, Maitreyi College, University of Delhi is thankfully acknowledged. We also thank Department of Zoology, University of Delhi, National Institute of Immunology and South Campus, University of Delhi for providing instrumentational facilities to perform the experiment. The work was also supported by the Senior Research Fellowships to SS from UGC (University Grants Commission) and Junior Research Fellowships to JSA and SM from CSIR (Council of Scientific and Industrial Research).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflict of interest.

Ethical approval

This article does not contain any studies conducted on humans and or vertebrate animals.


  1. 1.
    Mahmood A, Malik RN, Li J, Zhang G (2014) Human health risk assessment and dietary intake of organochlorine pesticides through air, soil and food crops (wheat and rice) along two tributaries of river Chenab, Pakistan. Food Chem Toxicol 71:17–25CrossRefGoogle Scholar
  2. 2.
    Somasundaram S, Abraham JS, Maurya S, Makhija S, Gupta R, Toteja R (2018) Cellular and molecular basis of heavy metal-induced stress in ciliates. Curr Sci 114:1858–1865Google Scholar
  3. 3.
    Kjellstrom TE (1984) Perspectives and prospectives on health effects of metals. In: Niriagu JO (ed) Changing metal cycles and human health. Springer, Berlin, pp 407–423CrossRefGoogle Scholar
  4. 4.
    FAO, The state of food and agriculture (1996) In: FAO Agriculture Series, Food and agriculture organization of the United Nations. Vol. 29, Rome, pp 1–330Google Scholar
  5. 5.
    Kim JS, Kim H, Yim B, Rhee JS, Won EJ, Lee YM (2018) Identification and molecular characterization of two Cu/Zn-SODs and Mn-SOD in the marine ciliate Euplotes crassus: modulation of enzyme activity and transcripts in response to copper and cadmium. Aquat Toxicol 199:296–304CrossRefGoogle Scholar
  6. 6.
    Gupta D, Huang H, Yang X, Razafindrabe B, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177:437–444CrossRefGoogle Scholar
  7. 7.
    Kumar R, Mishra RK, Mishra V, Qidwai A, Pandey A, Shukla SK, Pandey M, Pathak A, Dikshit A (2016) Chapter 13-Detoxification and tolerance of heavy metals in plants. In: Ahmad P (ed) Plant metal interaction: emerging remediation techniques. Elsevier, Amsterdam, pp 335–359CrossRefGoogle Scholar
  8. 8.
    Mussali-Galante P, Tovar-Sanchez E, Valverde M, Rojas del Castillo E (2013) Biomarkers of exposure for assessing environmental metal pollution: from molecules to ecosystems. Rev Int Contam Ambie 29:117–140Google Scholar
  9. 9.
    Förstner U, Whittmann GTW (1981) Metal pollution in the aquatic environment. Springer, Berlin, pp 1–488CrossRefGoogle Scholar
  10. 10.
    Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182CrossRefGoogle Scholar
  11. 11.
    Benlaifa M, Djebar MR, Berredjem H, Benamara M, Ouali K, Djebar H (2016) Stress induced by cadmium: its effects on growth respiratory metabolism, antioxidant enzymes and reactive oxygen species (ROS) of Paramecium sp. Int J Pharm Sci Rev Res 38:276–281Google Scholar
  12. 12.
    Kushnareva Y, Murphy AN, Andreyev A (2002) Complex Imediated reactive oxygen species generation: modulation by cytochrome C and NAD(P) reduction state. Biochem J 368:545–553CrossRefGoogle Scholar
  13. 13.
    Lin AJ, Zhang XH, Chen MM, Cao Q (2007) Oxidative stress and DNA damages induced by cadmium accumulation. J Environ Sci 19:596–602CrossRefGoogle Scholar
  14. 14.
    López E, Arce C, Oset-Gasque MJ, Cañadas S, González MP (2006) Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med 40:940–951CrossRefGoogle Scholar
  15. 15.
    Nicholls DG (2002) Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease. Int J Biochem Cell Biol 34:372–667CrossRefGoogle Scholar
  16. 16.
    Stohs BJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336CrossRefGoogle Scholar
  17. 17.
    Fabbri E, Valbonesi P, Franzellitti S (2008) HSP expression in bivalves. Invertebr Surviv J 5:135–161Google Scholar
  18. 18.
    Kim BM, Rhee JS, Jeong CB, Seo JS, Park GS, Lee YM, Lee JS (2014) Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus. Comp Biochem Physiol C 166:65–74Google Scholar
  19. 19.
    Del Razo LM, Quintanilla-Vega B, Brambila-Colombres E, Calderón-Aranda ES, Manno M, Albores A (2001) Stress proteins induced by arsenic. Toxicol Appl Pharmacol 177:132–148CrossRefGoogle Scholar
  20. 20.
    Hendrick JP, Hartl F (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384CrossRefGoogle Scholar
  21. 21.
    Gade N, Mahapatra RK, Sonawane A, Singh VK, Doreswamy R, Saini M (2010) Molecular characterization of heat shock protein 70-1 gene of goat (Capra hircus). Mol Biol Int 2010:1–7CrossRefGoogle Scholar
  22. 22.
    Res P, Thole J, de Vries R (1991) Heat shock proteins and autoimmunity in humans. Springer Semin Immunopathol 13:81–98CrossRefGoogle Scholar
  23. 23.
    Budin K, Phillippe H (1998) New insights into the phylogeny of eukaryotes based on ciliate Hsp70 sequences. Mol Biol Evol 15:943–956CrossRefGoogle Scholar
  24. 24.
    Athar M (2002) Oxidative stress and experimental carcinogenesis. Ind J Exp Biol 40:656–667Google Scholar
  25. 25.
    Toteja R, Makhija S, Sripoorna S, Abraham JS, Gupta R (2017) Influence of copper and cadmium toxicity on antioxidant enzyme activity in freshwater ciliates. Indian J Exp Biol 55:694–701Google Scholar
  26. 26.
    Pischedda A, Ramasamy KP, Mangiagalli M, Chiappori F, Milanesi L, Miceli C, Pucciarelli S, Lotti M (2018) Antarctic marine ciliates under stress: superoxide dismutase from the psychrophilic Euplotes focardii are cold-active yet heat tolerant enzymes. Sci Rep 8:14721CrossRefGoogle Scholar
  27. 27.
    Fridovich I (1986) Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol 58:61–97Google Scholar
  28. 28.
    Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149CrossRefGoogle Scholar
  29. 29.
    Abraham JS, Sripoorna S, Choudhry A, Toteja R, Gupta R, Makhija S, Warren A (2017) Assessment of heavy metal toxicity in four species of freshwater ciliates (Spirotrichea: Ciliophora) from Delhi. India Curr Sci 113:2141–2150CrossRefGoogle Scholar
  30. 30.
    Makhija S, Gupta R, Toteja R, Abraham JS, Sripoorna S (2015) Cadmium induced ultrastructural changes in the ciliate, Stylonychia mytilus (Ciliophora, Hypotrichida). J Cell Tissue Res 15:5151–5157Google Scholar
  31. 31.
    Abraham JS, Sripoorna S, Maurya S, Makhija S, Gupta R, Toteja R (2019) Techniques and tools for species identification in ciliates: a review. Int J Syst Evol Microbiol. Google Scholar
  32. 32.
    Dayeh VR, Grominsky S, DeWitte-Orr SJ, Sotornik D, Yeung CR, Lee LE, Bols NC (2005) Comparing a ciliate and a fish cell line for their sensitivity to several classes of toxicants by the novel application of multiwell filter plates to Tetrahymena. Res Microbiol 156:93–103CrossRefGoogle Scholar
  33. 33.
    Gutiérrez JC, Martín-González A, Díaz S, Ortega R (2003) Ciliates as a potential source of cellular and molecular biomarkers/biosensors for heavy metal pollution. Eur J Protistol 39:461–467CrossRefGoogle Scholar
  34. 34.
    Anderson RC, Lindauer KR, Prescott DM (1996) A gene-sized DNA molecule encoding heat-shock protein 70 in Oxytricha nova. Gene 168:103–107CrossRefGoogle Scholar
  35. 35.
    Díaz S, Martín-González A, Gutiérrez JC (2006) Evaluation of heavy metal acute toxicity and bioaccumulation in soil ciliated protozoa. Environ Int 32:711–717CrossRefGoogle Scholar
  36. 36.
    Gilron GL, Lynn DH (1998) Ciliated protozoa as test organisms in toxicity assessments. In: Wells PG, Lee K, Blaise C (eds) Microscale testing in aquatic toxicology: advances, techniques and practice. CRC Press, Boca Raton, pp 323–336Google Scholar
  37. 37.
    Madoni P, Esteban G, Gorbi G (1992) Acute toxicity of cadmium, copper, mercury, and zinc to ciliates from activated sludge plants. Bull Environ Contam Toxicol 49:900–905CrossRefGoogle Scholar
  38. 38.
    Madoni P, Davoli D, Gorbi G (1994) Acute toxicity of lead, chromium, and other heavy metals to ciliates from activated sludge plants. Bull Environ Contam Toxicol 53:420–425CrossRefGoogle Scholar
  39. 39.
    Madoni P, Romeo MG (2006) Acute toxicity of heavy metals towards freshwater ciliated protists. Environ Pollut 141:1–7CrossRefGoogle Scholar
  40. 40.
    Martín-González A, Borniquel S, Díaz S, Ortega R, Gutiérrez JC (2005) Ultrastructural alterations in ciliated protozoa under heavy metal exposure. Cell Biol Int 29:119–126CrossRefGoogle Scholar
  41. 41.
    Nilsson JR (1997) Tetrahymena recovering from a heavy accumulation of a gold salt. Acta Protozool 36:111–119Google Scholar
  42. 42.
    Piccinni E, Irato P, Coppellotti O, Guidolin L (1987) Biochemical and ultrastructural data on Tetrahymena pyriformis treated with copper and cadmium. J Cell Sci 88:283–293Google Scholar
  43. 43.
    Rehman A, Shakoori FR, Shakoori AR (2009) Heavy metal uptake by Euplotes mutabilis and its possible use in bioremediation of industrial wastewater. Bull Environ Contam Toxicol 83:130–135CrossRefGoogle Scholar
  44. 44.
    Díaz S, Amaro F, Rico D, Campos V, Benitez L, Martín-González A, Hamilton EP, Orias E, Gutiérrez JC (2007) Tetrahymena metallothioneins fall into two discrete subfamilies. PLoS ONE 2:e291CrossRefGoogle Scholar
  45. 45.
    Guo L, Fu C, Miao W (2008) Cloning, characterization, and gene expression analysis of a novel cadmium metallothionein gene in Tetrahymena pigmentosa. Gene 423:29–35CrossRefGoogle Scholar
  46. 46.
    Kim SH, Jung MY, Lee YM (2011) Effect of heavy metals on the antioxidant enzymes in the marine ciliate Euplotes crassus. Toxicol Environ Health Sci 3:213–219CrossRefGoogle Scholar
  47. 47.
    Shuja RN, Shakoori AR (2009) Identification and cloning of first cadmium metallothionein like gene from locally isolated ciliate, Paramecium sp. Mol Biol Rep 36:549–560CrossRefGoogle Scholar
  48. 48.
    Froehlicher M, Liedtke A, Groh KJ, Neuhauss SC, Segner H, Eggen RI (2009) Zebrafish (Danio rerio) neuromast: promising biological endpoint linking developmental and toxicological studies. Aquat Toxicol 95:307–319CrossRefGoogle Scholar
  49. 49.
    Jung KH, Gho HJ, Nguyen MX, Kim SR, An G (2013) Genome-wide expression analysis of HSP70 family genes in rice and identification of a cytosolic HSP70 gene highly induced under heat stress. Funct Integr Genomics 13:391–402CrossRefGoogle Scholar
  50. 50.
    Arora S, Gupta R, Kamra K, Sapra GS (1999) Characterization of Paraurostyla coronata sp. n. including a comparative account of other members of the genus. Acta Protozool 38:133–144Google Scholar
  51. 51.
    Chapman-Andresen C (1958) Pinocytosis of inorganic salts by Amoeba proteus (Chaos diffluens). C R Trav Lab Carlsberg Chim 31:77–92Google Scholar
  52. 52.
    Kamra K, Sapra GR (1990) Partial retention of parental ciliature during morphogenesis of the ciliate Coniculostomum monilata (Dragesco & Njiné, 1971) Njiné, 1978 (Oxytrichidae, Hypotrichida). Eur J Protistol 25:264–278CrossRefGoogle Scholar
  53. 53.
    Wilbert N (1975) Eine verbesserte Technik der Protargol impragnation fur Ciliaten. Mikrokosmos 6:171–179Google Scholar
  54. 54.
    Chieco P, Derenzini M (1999) The Feulgen reaction 75 years on. Histochem Cell Biol 111:345–358CrossRefGoogle Scholar
  55. 55.
    Feulgen R, Rossenbeck H (1924) Mikroskopisch-chemischer Nachweis einer Nucleinsäure vom Typus der Thymonucleinsaure und die darauf beruhende elektive Farbung vom Zelikernen in mikroskopischen Praparaten. Zts Phys Chem 135:203–248Google Scholar
  56. 56.
    Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, Del Campo J, Dunthorn M, Edvardsen B, Eglit Y, Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJG, Lara E, Le Gall L, Lynn DH, Mann DG, Massana I, Molera R, Mitchell EAD, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L, Shimano S, Spiegel FW, Torruella I, Cortes G, Youssef N, Zlatogursky V, Zhang Q (2018) Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol 65:623–649Google Scholar
  57. 57.
    Lynn D (2008) The ciliated protozoa: characterization, classification, and guide to the literature, 3rd edn. Springer, Berlin, pp 141–173Google Scholar
  58. 58.
    Eldh M, Lötvall J, Malmhäll C, Ekström K (2012) Importance of RNA isolation methods for analysis of exosomal RNA: evaluation of different methods. Mol Immunol 50:278–286CrossRefGoogle Scholar
  59. 59.
    Midthun ES (2012). Characterization of the cytochrome p450 family in the unique diatom Seminavis robusta. NTNU, pp 1–144Google Scholar
  60. 60.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408CrossRefGoogle Scholar
  61. 61.
    Vdacny P, Rajter L, Stoeck T, Foissner W (2018) A proposed timescale for the evolution of Armophorean ciliates: clevelandellids diversity more rapidly than metopids. J Eukaryot Microbiol 66:167–181CrossRefGoogle Scholar
  62. 62.
    Henderson G, Cox F, Kittelmann S, Miri VH, Zethof M, Noel SJ, Waghorn GC, Janssen PH (2013) Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS ONE 8:e74787CrossRefGoogle Scholar
  63. 63.
    Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) Expasy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788CrossRefGoogle Scholar
  64. 64.
    Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) Swiss-model: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303CrossRefGoogle Scholar
  65. 65.
    Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with Swiss-Model and Swiss-PdbViewer: a historical perspective. Electrophoresis 30:S162–S173CrossRefGoogle Scholar
  66. 66.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comp Chem 19:1639–1662CrossRefGoogle Scholar
  67. 67.
    Yang J, Zhang Y (2015) Protein structure and function prediction using I-TASSER. Curr Protoc Bioinform 52:5.8.1–5.8.15CrossRefGoogle Scholar
  68. 68.
    Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  69. 69.
    Luck H (1974) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis V4. Academic Press, New York, pp 885–894Google Scholar
  70. 70.
    Humaira M, Raqeeb A, Memon A, Khoharo HK (2016) Malondialdehyde, blood lipids and antioxidant activity in newly diagnosed type 2 diabetics. J Liaquat Uni Med Health Sci 15:78–82Google Scholar
  71. 71.
    Bergmeyer HU (1983) Methods of enzymatic analysis, vol 2. Verlag Chemie, Weinheim, pp 147–225Google Scholar
  72. 72.
    Nicholls P, Schonbaum GR (1963) In: Boyer PD, Lardy H, Myrbäck K (eds) The enzyme. Academic Press, New York, pp 147–225Google Scholar
  73. 73.
    Petkeviciute E, Kania PW, Skovgaard A (2015) Genetic responses of the marine copepod Acartia tonsa (Dana) to heat shock and epibiont infestation. Aquac Rep 2:10–16CrossRefGoogle Scholar
  74. 74.
    Somasundaram S, Abraham JS, Gupta R, Makhija S, Toteja R (2015) Diverse freshwater spirotrich ciliate fauna from Okhla bird sanctuary, Delhi, India. Glob J Res Anal 4:37–41Google Scholar
  75. 75.
    Aeschlimann S, Jönsson F, Postberg J, Stover NA, Petera RL, Lipps HJ, Nowacki M, Swart EC (2014) The draft assembly of the radically organized Stylonychia lemnae macronuclear genome. Genome Biol Evol 6:1707–1723CrossRefGoogle Scholar
  76. 76.
    Lipps HJ, Nock A, Riewe M, Steinbrück G (1978) Chromatin structure in the macronucleus of the ciliate Stylonychia mytilus. Nucleic Acid Res 5:4699–4709CrossRefGoogle Scholar
  77. 77.
    Swart EC, Bracht JR, Magrini V, Minx P, Chen X, Zhou Y, Khurana JS, Goldman AD, Nowacki M, Schotanus K, Jung S, Fulton RS, Ly A et al (2013) The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes. PLoS Biol 11:e1001473CrossRefGoogle Scholar
  78. 78.
    Sapra GR, Dass CM (1970) Organization and development of the macronuclear anlage in Stylonychia notophora stokes. J Cell Sci 6:351–363Google Scholar
  79. 79.
    Herrick G, Cartinhour SW, Williams KR, Kotter KP (1987) Multiple sequence versions of the Oxytricha fallax 81-MAC alternate processing family. J Protozool 34:429–434CrossRefGoogle Scholar
  80. 80.
    Kabani M, Martineau CN (2008) Multiple hsp70 isoforms in the eukaryotic cytosol: mere redundancy or functional specificity? Curr Genomics 9:338–348CrossRefGoogle Scholar
  81. 81.
    Bennett WS, Steitz TA (1980) Structure of a complex between yeast hexokinase-A and glucose: 2. Detailed comparisons of conformation and active-site configuration with the native hexokinase-B monomer and dimer. J Mol Biol 140:211–230CrossRefGoogle Scholar
  82. 82.
    Woo HJ, Jiang J, Lafer EM, Sousa R (2009) ATP induced conformational changes in hsp70: molecular dynamics and experimental validation of an in silico predicted conformation. NIH 48:11470–11477Google Scholar
  83. 83.
    Fernández-Fernández MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM (2017) Hsp70—a master regulator in protein degradation. FEBS Lett 591:2648–2660CrossRefGoogle Scholar
  84. 84.
    Casanova FM, Honda RT, Ferreira-Nozawa MS, Aride PHR, Nozawa SR (2013) Effects of copper and cadmium exposure on mRNA expression of catalase, glutamine synthetases, cytochrome P450 and heat shock protein 70 in Tambaqi fish (Colossoma macropomum). Gene Exp Genet Genomics 6:1–8CrossRefGoogle Scholar
  85. 85.
    Tamás MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 4:252–267CrossRefGoogle Scholar
  86. 86.
    Panda SK, Matsumoto H (2010) Changes in antioxidant gene expression and induction of oxidative stress in pea (Pisum sativum L.) under Al stress. Biometals 23:753–762CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Ciliate Biology Laboratory, Department of Zoology, Acharya Narendra Dev CollegeUniversity of DelhiNew DelhiIndia
  2. 2.Department of ZoologyMaitreyi College, University of DelhiNew DelhiIndia

Personalised recommendations